{"title":"Factorizations for quasi-Banach time–frequency spaces and Schatten classes","authors":"Divyang G. Bhimani , Joachim Toft","doi":"10.1016/j.indag.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>We deduce factorization properties for Wiener amalgam spaces <span><math><mrow><mi>W</mi><mspace></mspace><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup></mrow></math></span>, an extended family of modulation spaces <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>ℬ</mi><mo>)</mo></mrow></mrow></math></span>, and for Schatten symbols <span><math><msubsup><mrow><mi>s</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span> in pseudo-differential calculus under e.<!--> <!-->g. convolutions, twisted convolutions and symbolic products. Here <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>ℬ</mi><mo>)</mo></mrow></mrow></math></span> can be any quasi-Banach Orlicz modulation space. For example we show that <span><math><mrow><mi>W</mi><mspace></mspace><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>r</mi></mrow></msup><mo>∗</mo><mi>W</mi><mspace></mspace><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>=</mo><mi>W</mi><mspace></mspace><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mi>W</mi><mspace></mspace><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>r</mi></mrow></msup><mi>#</mi><msubsup><mrow><mi>s</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>w</mi></mrow></msubsup><mo>=</mo><msubsup><mrow><mi>s</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>w</mi></mrow></msubsup></mrow></math></span> when <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, <span><math><mrow><mi>r</mi><mo>≤</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo><</mo><mi>∞</mi></mrow></math></span>. In particular we improve Rudin’s identity <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>∗</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>=</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span>.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 3","pages":"Pages 838-879"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724001095","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We deduce factorization properties for Wiener amalgam spaces , an extended family of modulation spaces , and for Schatten symbols in pseudo-differential calculus under e. g. convolutions, twisted convolutions and symbolic products. Here can be any quasi-Banach Orlicz modulation space. For example we show that and when , . In particular we improve Rudin’s identity .
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.