Multiplicative independence in the sequence of k-generalized Lucas numbers

IF 0.5 4区 数学 Q3 MATHEMATICS
Herbert Batte , Mahadi Ddamulira , Juma Kasozi , Florian Luca
{"title":"Multiplicative independence in the sequence of k-generalized Lucas numbers","authors":"Herbert Batte ,&nbsp;Mahadi Ddamulira ,&nbsp;Juma Kasozi ,&nbsp;Florian Luca","doi":"10.1016/j.indag.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mrow><mo>(</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mo>−</mo><mi>k</mi></mrow></msub></math></span> be the sequence of <span><math><mi>k</mi></math></span>-generalized Lucas numbers for some fixed integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, whose first <span><math><mi>k</mi></math></span> terms are <span><math><mrow><mn>0</mn><mo>,</mo><mspace></mspace><mo>…</mo><mspace></mspace><mo>,</mo><mspace></mspace><mn>0</mn><mo>,</mo><mspace></mspace><mn>2</mn><mo>,</mo><mspace></mspace><mn>1</mn></mrow></math></span> and each term afterward is the sum of the preceding <span><math><mi>k</mi></math></span> terms. In this paper, we find all pairs of the <span><math><mi>k</mi></math></span>-generalized Lucas numbers that are multiplicatively dependent.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 3","pages":"Pages 819-837"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001935772400106X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let (Ln(k))n2k be the sequence of k-generalized Lucas numbers for some fixed integer k2, whose first k terms are 0,,0,2,1 and each term afterward is the sum of the preceding k terms. In this paper, we find all pairs of the k-generalized Lucas numbers that are multiplicatively dependent.
k-广义Lucas数序列中的乘法独立性
设(Ln(k))n≥2−k为k-广义Lucas数的序列,对于某固定整数k≥2,其前k项为0,…,0,2,1,其后每一项为前k项之和。在本文中,我们找到了乘相关的所有k-广义Lucas数对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信