Restricted Hausdorff spectra of q-adic automorphisms

IF 1.5 1区 数学 Q1 MATHEMATICS
Jorge Fariña-Asategui
{"title":"Restricted Hausdorff spectra of q-adic automorphisms","authors":"Jorge Fariña-Asategui","doi":"10.1016/j.aim.2025.110294","DOIUrl":null,"url":null,"abstract":"<div><div>Firstly, we completely determine the self-similar Hausdorff spectrum of the group of <em>q</em>-adic automorphisms where <em>q</em> is a prime power, answering a question of Grigorchuk. Indeed, we take a further step and completely determine its Hausdorff spectra restricted to the most important subclasses of self-similar groups, providing examples differing drastically from the previously known ones in the literature. Our proof relies on a new explicit formula for the computation of the Hausdorff dimension of closed self-similar groups and a generalization of iterated permutational wreath products.</div><div>Secondly, we provide for every prime <em>p</em> the first examples of just infinite branch pro-<em>p</em> groups with zero Hausdorff dimension in <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, giving strong evidence against a well-known conjecture of Boston.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"472 ","pages":"Article 110294"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001926","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Firstly, we completely determine the self-similar Hausdorff spectrum of the group of q-adic automorphisms where q is a prime power, answering a question of Grigorchuk. Indeed, we take a further step and completely determine its Hausdorff spectra restricted to the most important subclasses of self-similar groups, providing examples differing drastically from the previously known ones in the literature. Our proof relies on a new explicit formula for the computation of the Hausdorff dimension of closed self-similar groups and a generalization of iterated permutational wreath products.
Secondly, we provide for every prime p the first examples of just infinite branch pro-p groups with zero Hausdorff dimension in Γp, giving strong evidence against a well-known conjecture of Boston.
q进自同构的受限Hausdorff谱
首先,我们完全确定了q为素幂的q进自同构群的自相似Hausdorff谱,回答了Grigorchuk的一个问题。事实上,我们采取了进一步的步骤,并完全确定了它的Hausdorff谱限制在自相似群的最重要的亚类中,并提供了与文献中先前已知的例子截然不同的例子。我们的证明依赖于一个新的计算封闭自相似群的Hausdorff维数的显式公式和迭代置换环积的推广。其次,我们对每一个素数p给出了Γp中具有零Hausdorff维数的刚好无限支亲p群的第一个例子,有力地证明了一个著名的波士顿猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信