A cancer theranostic nanoplatform for second near-infrared fluorescence imaging-guided carbon monoxide-sensitized mild photothermal therapy with ICD induction

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Shaoyan Gan , Xiuli Wen , Li Li , Keyi Ao , Jiaqi Qin , Yi Hao , Xia Guo
{"title":"A cancer theranostic nanoplatform for second near-infrared fluorescence imaging-guided carbon monoxide-sensitized mild photothermal therapy with ICD induction","authors":"Shaoyan Gan ,&nbsp;Xiuli Wen ,&nbsp;Li Li ,&nbsp;Keyi Ao ,&nbsp;Jiaqi Qin ,&nbsp;Yi Hao ,&nbsp;Xia Guo","doi":"10.1016/j.jcis.2025.137652","DOIUrl":null,"url":null,"abstract":"<div><div>Mild-temperature photothermal therapy (mild PTT), utilizing photothermal agents to convert external light into mild heat (&lt;45 °C), holds significant potential as a localized treatment modality to induce cellular thermal damage. This therapeutic strategy not only directly eliminates targeted cells but also induces immunogenic cell death (ICD), activating the immune response. However, the presence of heat shock proteins (HSPs) can significantly reduce the effectiveness of photothermal therapy. Therefore, it is crucial to inhibit HSP repair and minimize damage to surrounding normal cells in order to enhance the efficiency of low-temperature PTT. Additionally, carbon monoxide (CO) has been shown to suppress the upregulation of HSPs in cancer cells under heat treatment. Furthermore, the utilization of second near-infrared (NIR-II) fluorescence particles can improve the precision and suitability of PTT due to their increased penetration depth and novel imaging capabilities. In this study, we developed a NIR-light-activated CO release system using CO-loaded mesoporous organosilica nanoparticles (CO-MON) for enhancing the effectiveness of mild PTT by suppressing HSPs repair through selectively targeted CO delivery. Triiron dodecacarbonyl (Fe<sub>3</sub>(CO)<sub>12</sub>), as the source of CO was employed for encapsulation within the pores of the MON. These MON showed emission in the NIR-II range, while also displaying remarkable photostability and a high efficiency in photothermal conversion (34.7 %). Through intratumoral administration, the CO–MON platform demonstrated efficient tumor accumulation and localized photothermal efficacy <em>in vivo</em>. In vitro and <em>in vivo</em> studies demonstrated that this exceptional photothermal effect not only effectively eliminated tumor but also augmented tumor ICD.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"693 ","pages":"Article 137652"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725010434","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mild-temperature photothermal therapy (mild PTT), utilizing photothermal agents to convert external light into mild heat (<45 °C), holds significant potential as a localized treatment modality to induce cellular thermal damage. This therapeutic strategy not only directly eliminates targeted cells but also induces immunogenic cell death (ICD), activating the immune response. However, the presence of heat shock proteins (HSPs) can significantly reduce the effectiveness of photothermal therapy. Therefore, it is crucial to inhibit HSP repair and minimize damage to surrounding normal cells in order to enhance the efficiency of low-temperature PTT. Additionally, carbon monoxide (CO) has been shown to suppress the upregulation of HSPs in cancer cells under heat treatment. Furthermore, the utilization of second near-infrared (NIR-II) fluorescence particles can improve the precision and suitability of PTT due to their increased penetration depth and novel imaging capabilities. In this study, we developed a NIR-light-activated CO release system using CO-loaded mesoporous organosilica nanoparticles (CO-MON) for enhancing the effectiveness of mild PTT by suppressing HSPs repair through selectively targeted CO delivery. Triiron dodecacarbonyl (Fe3(CO)12), as the source of CO was employed for encapsulation within the pores of the MON. These MON showed emission in the NIR-II range, while also displaying remarkable photostability and a high efficiency in photothermal conversion (34.7 %). Through intratumoral administration, the CO–MON platform demonstrated efficient tumor accumulation and localized photothermal efficacy in vivo. In vitro and in vivo studies demonstrated that this exceptional photothermal effect not only effectively eliminated tumor but also augmented tumor ICD.

Abstract Image

第二近红外荧光成像引导的一氧化碳敏化温和光热疗法与 ICD 诱导的癌症治疗纳米平台
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信