{"title":"A general strategy to enhance surface hydrophobicity through modifying a rough-textured surface with weakly hydrophilic elemental sulfur","authors":"Xiaobing Chen, Ruihang Wen, Gaocan Qi, Hechao Xu, Zhihao Yuan","doi":"10.1016/j.jcis.2025.137659","DOIUrl":null,"url":null,"abstract":"<div><div>Lotus leaves usually get the superhydrophobicity from the presence of epicuticular wax on its multilevel micro- and nano-structured surface. It is known that the epicuticular wax is weakly hydrophilic with a contact angle of ∼ 74°, and inorganic elemental sulfur also has a weak hydrophilicity similar to the wax. Inspired by the waxy feature, here we first attempt a superhydrophobicity-harvested strategy by modifying a rough surface with weakly hydrophilic elemental sulfur. The superhydrophobicity of a series of materials including metal hydroxides, oxides, sulfides and chlorides, metals, and even hydrophilic organics, can be achieved by prefabricating their topographic textures combined with elemental sulfur surface modification. DFT calculation suggests that the presence of V<sub>S</sub> defects on the elemental sulfur coatings can make their rough surfaces have a stronger affinity for O<sub>2</sub><sup>2–</sup> than for H<sub>2</sub>O, which allows for the formation of O<sub>2</sub><sup>2–</sup>-adsorbed layer on their surface, and thus imbues the hydrophobicity or superhydrophobicity. Our study offers a new and general approach to enhance the surface hydrophobicity via inorganic rather than low surface-energy organic modification.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"693 ","pages":"Article 137659"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725010501","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lotus leaves usually get the superhydrophobicity from the presence of epicuticular wax on its multilevel micro- and nano-structured surface. It is known that the epicuticular wax is weakly hydrophilic with a contact angle of ∼ 74°, and inorganic elemental sulfur also has a weak hydrophilicity similar to the wax. Inspired by the waxy feature, here we first attempt a superhydrophobicity-harvested strategy by modifying a rough surface with weakly hydrophilic elemental sulfur. The superhydrophobicity of a series of materials including metal hydroxides, oxides, sulfides and chlorides, metals, and even hydrophilic organics, can be achieved by prefabricating their topographic textures combined with elemental sulfur surface modification. DFT calculation suggests that the presence of VS defects on the elemental sulfur coatings can make their rough surfaces have a stronger affinity for O22– than for H2O, which allows for the formation of O22–-adsorbed layer on their surface, and thus imbues the hydrophobicity or superhydrophobicity. Our study offers a new and general approach to enhance the surface hydrophobicity via inorganic rather than low surface-energy organic modification.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies