{"title":"W-Net: A facial feature-guided face super-resolution network","authors":"Hao Liu , Yang Yang , Yunxia Liu","doi":"10.1016/j.imavis.2025.105549","DOIUrl":null,"url":null,"abstract":"<div><div>Face Super-Resolution (FSR) aims to recover high-resolution (HR) face images from low-resolution (LR) ones. Despite the progress made by convolutional neural networks in FSR, the results of existing approaches are not ideal due to their low reconstruction efficiency and insufficient utilization of prior information. Considering that faces are highly structured objects, effectively leveraging facial priors to improve FSR results is a worthwhile endeavor. This paper proposes a novel network architecture called W-Net to address this challenge. W-Net leverages a meticulously designed Parsing Block to fully exploit the resolution potential of LR image. We use this parsing map as an attention prior, effectively integrating information from both the parsing map and LR images. Simultaneously, we perform multiple fusions across different latent representation dimensions through the W-shaped network structure combined with the LPF(<strong>L</strong>R-<strong>P</strong>arsing Map <strong>F</strong>usion Module). Additionally, we utilize a facial parsing graph as a mask, assigning different weights and loss functions to key facial areas to balance the performance of our reconstructed facial images between perceptual quality and pixel accuracy. We conducted extensive comparative experiments, not only limited to conventional facial super-resolution metrics but also extending to downstream tasks such as facial recognition and facial keypoint detection. The experiments demonstrate that W-Net exhibits outstanding performance in quantitative metrics, visual quality, and downstream tasks.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"159 ","pages":"Article 105549"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625001374","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Face Super-Resolution (FSR) aims to recover high-resolution (HR) face images from low-resolution (LR) ones. Despite the progress made by convolutional neural networks in FSR, the results of existing approaches are not ideal due to their low reconstruction efficiency and insufficient utilization of prior information. Considering that faces are highly structured objects, effectively leveraging facial priors to improve FSR results is a worthwhile endeavor. This paper proposes a novel network architecture called W-Net to address this challenge. W-Net leverages a meticulously designed Parsing Block to fully exploit the resolution potential of LR image. We use this parsing map as an attention prior, effectively integrating information from both the parsing map and LR images. Simultaneously, we perform multiple fusions across different latent representation dimensions through the W-shaped network structure combined with the LPF(LR-Parsing Map Fusion Module). Additionally, we utilize a facial parsing graph as a mask, assigning different weights and loss functions to key facial areas to balance the performance of our reconstructed facial images between perceptual quality and pixel accuracy. We conducted extensive comparative experiments, not only limited to conventional facial super-resolution metrics but also extending to downstream tasks such as facial recognition and facial keypoint detection. The experiments demonstrate that W-Net exhibits outstanding performance in quantitative metrics, visual quality, and downstream tasks.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.