Pleiotropic signaling of single-chain thyrostimulin (GPB5-GPA2) on homologous glycoprotein hormone receptors (ScFSHR, ScLHR, ScTSHR) in the elasmobranch Scyliorhinus canicula reproduction
{"title":"Pleiotropic signaling of single-chain thyrostimulin (GPB5-GPA2) on homologous glycoprotein hormone receptors (ScFSHR, ScLHR, ScTSHR) in the elasmobranch Scyliorhinus canicula reproduction","authors":"Fabian Jeanne , Stanislas Pilet , Yves Combarnous , Benoît Bernay , Sylvie Dufour , Pascal Favrel , Pascal Sourdaine","doi":"10.1016/j.mce.2025.112553","DOIUrl":null,"url":null,"abstract":"<div><div>The pituitary glycoprotein hormones (GPHs) control several physiological processes in vertebrates such as reproduction and metabolism. They include the luteinizing hormone (LH), the follicle-stimulating hormone (FSH), and the thyroid-stimulating hormone (TSH), which activate their cognate leucine-rich repeat G protein-coupled receptors (LGRs), LHR, FSHR, and TSHR. Each GPH consists of a common α subunit and a specific βFSH, βLH or βTSH subunit. More recently, two supplementary GPH proteins, GPA and GPB, were identified in nearly all bilaterians and are the ancestors of the pituitary GPH α- and β-subunits, respectively. Chondrichthyans (holocephalans and elasmobranchs), the sister group of bony vertebrates, are the most ancient clade to possess diversified GPH subunits. In the present study, GPA2, GPB5, TSHβ2, but not TSHβ1, and TSHR sequences have been identified in several elasmobranch genomes, and their 3D models were analyzed. Functional hormone-receptor interactions were studied in the small-spotted catshark (<em>Scyliorhinus canicula</em>) and showed that conditioned media from cells expressing the recombinant single-chain <em>Sc</em>GPB5-<em>Sc</em>GPA2 were more effective than independent subunits in activating <em>Sc</em>TSHR, <em>Sc</em>FSHR, and <em>Sc</em>LHR. Expression profiles were analyzed by real-time PCR, <em>in situ</em> hybridization, and immunohistochemistry along the male genital tract, other male and female tissues, and female tissues. A broader tissue distribution expression was observed for <em>tshr</em> and <em>gpa2</em> than for <em>gpb5,</em> which was mainly observed in the testes. In testis, expression of <em>tshr</em> and <em>gpb5</em> by Sertoli cells and of <em>gpa2</em> by germ cells suggested paracrine/autocrine functions of GPA2/GPB5/GPHR signaling during spermatogenesis. This study complements the data on GPA2 and GPB5 by studying a chondrichthyan of phylogenetic interest for understanding the evolution of endocrine regulation in vertebrates.</div></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"604 ","pages":"Article 112553"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303720725001042","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The pituitary glycoprotein hormones (GPHs) control several physiological processes in vertebrates such as reproduction and metabolism. They include the luteinizing hormone (LH), the follicle-stimulating hormone (FSH), and the thyroid-stimulating hormone (TSH), which activate their cognate leucine-rich repeat G protein-coupled receptors (LGRs), LHR, FSHR, and TSHR. Each GPH consists of a common α subunit and a specific βFSH, βLH or βTSH subunit. More recently, two supplementary GPH proteins, GPA and GPB, were identified in nearly all bilaterians and are the ancestors of the pituitary GPH α- and β-subunits, respectively. Chondrichthyans (holocephalans and elasmobranchs), the sister group of bony vertebrates, are the most ancient clade to possess diversified GPH subunits. In the present study, GPA2, GPB5, TSHβ2, but not TSHβ1, and TSHR sequences have been identified in several elasmobranch genomes, and their 3D models were analyzed. Functional hormone-receptor interactions were studied in the small-spotted catshark (Scyliorhinus canicula) and showed that conditioned media from cells expressing the recombinant single-chain ScGPB5-ScGPA2 were more effective than independent subunits in activating ScTSHR, ScFSHR, and ScLHR. Expression profiles were analyzed by real-time PCR, in situ hybridization, and immunohistochemistry along the male genital tract, other male and female tissues, and female tissues. A broader tissue distribution expression was observed for tshr and gpa2 than for gpb5, which was mainly observed in the testes. In testis, expression of tshr and gpb5 by Sertoli cells and of gpa2 by germ cells suggested paracrine/autocrine functions of GPA2/GPB5/GPHR signaling during spermatogenesis. This study complements the data on GPA2 and GPB5 by studying a chondrichthyan of phylogenetic interest for understanding the evolution of endocrine regulation in vertebrates.
期刊介绍:
Molecular and Cellular Endocrinology was established in 1974 to meet the demand for integrated publication on all aspects related to the genetic and biochemical effects, synthesis and secretions of extracellular signals (hormones, neurotransmitters, etc.) and to the understanding of cellular regulatory mechanisms involved in hormonal control.