Marta Moreno-Rodríguez , Iker Bengoetxea de Tena , Jonatan Martínez-Gardeazabal , Gorka Pereira-Castelo , Alberto Llorente-Ovejero , Iván Manuel , Rafael Rodríguez-Puertas
{"title":"Cannabinoid agonist WIN55,212-2 prevents scopolamine-induced impairment of spatial memory in rats","authors":"Marta Moreno-Rodríguez , Iker Bengoetxea de Tena , Jonatan Martínez-Gardeazabal , Gorka Pereira-Castelo , Alberto Llorente-Ovejero , Iván Manuel , Rafael Rodríguez-Puertas","doi":"10.1016/j.ejphar.2025.177612","DOIUrl":null,"url":null,"abstract":"<div><div>The endocannabinoid system is involved in diverse processes, like learning and memory, governed by cholinergic neurotransmission. Recent research demonstrates that in a rat model of dementia derived from basal forebrain cholinergic degeneration, WIN55,212-2, a potent cannabinoid receptor agonist, improves cognition through increased cortical choline levels. However, the effect of cannabinoids on cholinergic deficits is still under investigation. In this work, we studied the effect of this treatment in a pharmacological rat model of transient cholinergic hypofunction by the acute administration of the muscarinic antagonist, scopolamine (2 mg/kg), in spatial, recognition and aversive memory tests. Scopolamine induced memory impairment was observed in the three tests and, importantly, the cannabinoid subchronic treatment with low doses of WIN55,212-2 (0.5 mg/kg) prevented this deleterious effect in spatial memory when evaluated in Barnes maze test. Autoradiographic studies indicate that, following the WIN55,212-2 treatment, cannabinoid receptor density increased in the motor and somatosensory cortices. In layers I-V of the motor cortex, the activity of cannabinoid and muscarinic receptors also increased. These results suggest that WIN55,212-2, through the activation of cannabinoid receptors, indirectly elevates the muscarinic tone in key cortical areas for learning and memory, preventing the memory deficits induced by scopolamine specifically in spatial memory. This highlights the importance of the crosstalk between the endocannabinoid and the cholinergic system for learning and memory processes and suggest that cannabinoid agonists might be an alternative for the treatment of cognitive deficits associated with cholinergic dysfunction.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"998 ","pages":"Article 177612"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925003668","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The endocannabinoid system is involved in diverse processes, like learning and memory, governed by cholinergic neurotransmission. Recent research demonstrates that in a rat model of dementia derived from basal forebrain cholinergic degeneration, WIN55,212-2, a potent cannabinoid receptor agonist, improves cognition through increased cortical choline levels. However, the effect of cannabinoids on cholinergic deficits is still under investigation. In this work, we studied the effect of this treatment in a pharmacological rat model of transient cholinergic hypofunction by the acute administration of the muscarinic antagonist, scopolamine (2 mg/kg), in spatial, recognition and aversive memory tests. Scopolamine induced memory impairment was observed in the three tests and, importantly, the cannabinoid subchronic treatment with low doses of WIN55,212-2 (0.5 mg/kg) prevented this deleterious effect in spatial memory when evaluated in Barnes maze test. Autoradiographic studies indicate that, following the WIN55,212-2 treatment, cannabinoid receptor density increased in the motor and somatosensory cortices. In layers I-V of the motor cortex, the activity of cannabinoid and muscarinic receptors also increased. These results suggest that WIN55,212-2, through the activation of cannabinoid receptors, indirectly elevates the muscarinic tone in key cortical areas for learning and memory, preventing the memory deficits induced by scopolamine specifically in spatial memory. This highlights the importance of the crosstalk between the endocannabinoid and the cholinergic system for learning and memory processes and suggest that cannabinoid agonists might be an alternative for the treatment of cognitive deficits associated with cholinergic dysfunction.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.