Growth rates of the number of empty triangles and simplices

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Bhaswar B. Bhattacharya , Sandip Das , Sk Samim Islam , Saumya Sen
{"title":"Growth rates of the number of empty triangles and simplices","authors":"Bhaswar B. Bhattacharya ,&nbsp;Sandip Das ,&nbsp;Sk Samim Islam ,&nbsp;Saumya Sen","doi":"10.1016/j.comgeo.2025.102197","DOIUrl":null,"url":null,"abstract":"<div><div>Given a set <em>P</em> of <em>n</em> points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, in general position, denote by <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> the number of empty triangles with vertices in <em>P</em>. In this paper we investigate by how much <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> changes if a point <em>x</em> is removed from <em>P</em>. By constructing a graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> based on the arrangement of the empty triangles incident on <em>x</em>, we transform this geometric problem to the problem of counting triangles in the graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span>. We study properties of the graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> and, in particular, show that it is diamond-free. This relates the growth rate of the number of empty triangles to the famous Ruzsa–Szemerédi problem. We also derive similar bounds for the growth rate of the number of empty simplices for point sets in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"130 ","pages":"Article 102197"},"PeriodicalIF":0.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000355","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a set P of n points in R2, in general position, denote by N2(P) the number of empty triangles with vertices in P. In this paper we investigate by how much N2(P) changes if a point x is removed from P. By constructing a graph G2(x,P) based on the arrangement of the empty triangles incident on x, we transform this geometric problem to the problem of counting triangles in the graph G2(x,P). We study properties of the graph G2(x,P) and, in particular, show that it is diamond-free. This relates the growth rate of the number of empty triangles to the famous Ruzsa–Szemerédi problem. We also derive similar bounds for the growth rate of the number of empty simplices for point sets in Rd.
空三角形和单形的数量增长率
给定R2中n个点的集合P,在一般位置上,用N2(P)表示P中有顶点的空三角形的个数。本文研究如果从P中移出一个点x, N2(P)的变化量。通过构造一个图G2(x,P),我们将这个几何问题转化为图G2(x,P)中三角形的计数问题。我们研究了图G2(x,P)的性质,特别是证明了它是无金刚石的。这将空三角形数量的增长率与著名的ruzsa - szemerzedi问题联系起来。我们也为Rd中点集的空简单数的增长率导出了类似的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信