Estimating coefficient-by-coefficient breaks in panel data models

IF 9.9 3区 经济学 Q1 ECONOMICS
Yousef Kaddoura
{"title":"Estimating coefficient-by-coefficient breaks in panel data models","authors":"Yousef Kaddoura","doi":"10.1016/j.jeconom.2025.106005","DOIUrl":null,"url":null,"abstract":"<div><div>When estimating structural breaks, existing econometric methods adopt an a approach in which either all parameters change simultaneously, or they remain the same. In this paper, we consider the estimation of panel data models when an unknown subset of coefficients is subject to breaks. The challenge lies in estimating the breaks for each coefficient. To tackle this, we propose a new estimator for panel data, the “Coefficient-by-Coefficient Lasso” break estimator. This estimator is derived by penalizing the coefficients with a fused penalty and using component-wise adaptive weights. We present this estimator for two scenarios: those with homogeneous breaks and those with heterogeneous breaks. We show that the method identifies the number and dates of breaks for all coefficients with high probability and that the post-selection estimator is asymptotically normal. We examine the small-sample properties of the method through a Monte Carlo study and further apply it to analyze the influence of socioeconomic factors on crime.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 106005"},"PeriodicalIF":9.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625000594","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

When estimating structural breaks, existing econometric methods adopt an a approach in which either all parameters change simultaneously, or they remain the same. In this paper, we consider the estimation of panel data models when an unknown subset of coefficients is subject to breaks. The challenge lies in estimating the breaks for each coefficient. To tackle this, we propose a new estimator for panel data, the “Coefficient-by-Coefficient Lasso” break estimator. This estimator is derived by penalizing the coefficients with a fused penalty and using component-wise adaptive weights. We present this estimator for two scenarios: those with homogeneous breaks and those with heterogeneous breaks. We show that the method identifies the number and dates of breaks for all coefficients with high probability and that the post-selection estimator is asymptotically normal. We examine the small-sample properties of the method through a Monte Carlo study and further apply it to analyze the influence of socioeconomic factors on crime.
估计面板数据模型中逐个系数的断点
在估计结构断裂时,现有的计量经济学方法采用的方法要么是所有参数同时变化,要么是保持不变。在本文中,我们考虑了当一个未知的系数子集受到破坏时面板数据模型的估计。挑战在于估计每个系数的断点。为了解决这个问题,我们提出了一种新的面板数据估计器,即“系数逐系数套索”断裂估计器。该估计器是通过使用融合惩罚和组件自适应权重对系数进行惩罚而得到的。我们给出了两种情况下的估计量:齐次断裂和非均匀断裂。我们证明了该方法具有高概率地识别所有系数的中断次数和日期,并且选择后估计量是渐近正态的。我们通过蒙特卡罗研究检验了该方法的小样本性质,并进一步将其应用于分析社会经济因素对犯罪的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信