Van Quan Nguyen , Viet Hung Nguyen , Long Thanh Ngo , Le Minh Nguyen , Nhien-An Le-Khac
{"title":"Variational Deep Clustering approaches for anomaly-based cyber-attack detection","authors":"Van Quan Nguyen , Viet Hung Nguyen , Long Thanh Ngo , Le Minh Nguyen , Nhien-An Le-Khac","doi":"10.1016/j.jnca.2025.104182","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting network anomalies is a critical cybersecurity task, yet existing methods struggle with high-dimensional data and limited interpretability in latent space. These challenges hinder precise differentiation between normal and anomalous activities due to (i) the chaotic distribution of normal samples, (ii) the absence of constraints to optimize the normal region’s hypervolume leading to high false alarm rates, (iii) the lack of prior knowledge for estimating the probability distribution of normal data, and (iv) slow inference times.</div><div>This research introduces two innovative deep generative models: Deep Clustering Variational Auto-Encoder (DCVAE) and Deep Clustering Support Vector Data Description Variational Auto-Encoder (DC-SVDD-VAE), designed to enhance learning latent features for detecting network anomalies. Both models incorporate a clustering layer within the Encoder to discover a clustering architecture suitable for normal network data. They also leverage prior information, specifically a Gaussian probability distribution, to estimate the posterior distribution that generates normal network data. Additionally, the DC-SVDD-VAE model integrates SVDD layers, which refine the clustering structure by mapping it onto an optimally sized hypersphere before computing the posterior probability. These approaches improve the separation between normal and abnormal regions at latent space, making it easier to identify significant/distinguishing latent features.</div><div>Both models were evaluated in conjunction with seven distinct one-class anomaly detection methods to assess the efficiency of the proposed solutions and the robustness of the generated features. These detectors were assessed using well-known intrusion benchmark datasets, including NSL-KDD, UNSW-NB15, CIC-IDS-2017, CSE-CIC-IDS-2018, and CTU-13. The experimental findings revealed that both models outperformed existing baselines and state-of-the-art approaches in terms of accuracy. Furthermore, inference stage processing times showed a notable decrease.</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"240 ","pages":"Article 104182"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804525000797","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting network anomalies is a critical cybersecurity task, yet existing methods struggle with high-dimensional data and limited interpretability in latent space. These challenges hinder precise differentiation between normal and anomalous activities due to (i) the chaotic distribution of normal samples, (ii) the absence of constraints to optimize the normal region’s hypervolume leading to high false alarm rates, (iii) the lack of prior knowledge for estimating the probability distribution of normal data, and (iv) slow inference times.
This research introduces two innovative deep generative models: Deep Clustering Variational Auto-Encoder (DCVAE) and Deep Clustering Support Vector Data Description Variational Auto-Encoder (DC-SVDD-VAE), designed to enhance learning latent features for detecting network anomalies. Both models incorporate a clustering layer within the Encoder to discover a clustering architecture suitable for normal network data. They also leverage prior information, specifically a Gaussian probability distribution, to estimate the posterior distribution that generates normal network data. Additionally, the DC-SVDD-VAE model integrates SVDD layers, which refine the clustering structure by mapping it onto an optimally sized hypersphere before computing the posterior probability. These approaches improve the separation between normal and abnormal regions at latent space, making it easier to identify significant/distinguishing latent features.
Both models were evaluated in conjunction with seven distinct one-class anomaly detection methods to assess the efficiency of the proposed solutions and the robustness of the generated features. These detectors were assessed using well-known intrusion benchmark datasets, including NSL-KDD, UNSW-NB15, CIC-IDS-2017, CSE-CIC-IDS-2018, and CTU-13. The experimental findings revealed that both models outperformed existing baselines and state-of-the-art approaches in terms of accuracy. Furthermore, inference stage processing times showed a notable decrease.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.