Role of Electron Spin, Chirality, and Charge Dynamics in Promoting the Persistence of Nascent Nucleic Acid–Peptide Complexes

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Pratik Vyas*, Kakali Santra, Naupada Preeyanka, Anu Gupta, Orit Weil-Ktorza, Qirong Zhu, Norman Metanis, Jonas Fransson, Liam M. Longo and Ron Naaman*, 
{"title":"Role of Electron Spin, Chirality, and Charge Dynamics in Promoting the Persistence of Nascent Nucleic Acid–Peptide Complexes","authors":"Pratik Vyas*,&nbsp;Kakali Santra,&nbsp;Naupada Preeyanka,&nbsp;Anu Gupta,&nbsp;Orit Weil-Ktorza,&nbsp;Qirong Zhu,&nbsp;Norman Metanis,&nbsp;Jonas Fransson,&nbsp;Liam M. Longo and Ron Naaman*,&nbsp;","doi":"10.1021/acs.jpcb.5c0115010.1021/acs.jpcb.5c01150","DOIUrl":null,"url":null,"abstract":"<p >Primitive nucleic acids and peptides likely collaborated in early biochemistry. What forces drove their interactions and how did these forces shape the properties of primitive complexes? We investigated how two model primordial polypeptides associate with DNA. When peptides were coupled to a ferromagnetic substrate, DNA binding depended on the substrate’s magnetic moment orientation. Reversing the magnetic field nearly abolished binding despite complementary charges. Inverting the peptide chirality or just the cysteine residue reversed this effect. These results are attributed to the chiral-induced spin selectivity (CISS) effect, where molecular chirality and electron spin alter a protein’s electric polarizability. The presence of CISS in simple protein–DNA complexes suggests that it played a significant role in ancient biomolecular interactions. A major consequence of CISS is enhancement of the kinetic stability of protein–nucleic acid complexes. These findings reveal how chirality and spin influence bioassociation, offering insights into primitive biochemical evolution and shaping contemporary protein functions.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 16","pages":"3978–3987 3978–3987"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcb.5c01150","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c01150","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Primitive nucleic acids and peptides likely collaborated in early biochemistry. What forces drove their interactions and how did these forces shape the properties of primitive complexes? We investigated how two model primordial polypeptides associate with DNA. When peptides were coupled to a ferromagnetic substrate, DNA binding depended on the substrate’s magnetic moment orientation. Reversing the magnetic field nearly abolished binding despite complementary charges. Inverting the peptide chirality or just the cysteine residue reversed this effect. These results are attributed to the chiral-induced spin selectivity (CISS) effect, where molecular chirality and electron spin alter a protein’s electric polarizability. The presence of CISS in simple protein–DNA complexes suggests that it played a significant role in ancient biomolecular interactions. A major consequence of CISS is enhancement of the kinetic stability of protein–nucleic acid complexes. These findings reveal how chirality and spin influence bioassociation, offering insights into primitive biochemical evolution and shaping contemporary protein functions.

电子自旋、手性和电荷动力学在促进新生核酸-肽复合物持久性中的作用
原始核酸和多肽可能在早期生物化学中协同作用。是什么力量驱动它们的相互作用?这些力量是如何塑造原始复合体的特性的?我们研究了两种模型原始多肽是如何与DNA结合的。当肽与铁磁底物偶联时,DNA的结合取决于底物的磁矩方向。反转磁场几乎消除了结合,尽管有互补电荷。相反的肽手性或仅仅是半胱氨酸残基逆转了这种效果。这些结果归因于手性诱导的自旋选择性(CISS)效应,其中分子手性和电子自旋改变了蛋白质的电极化性。CISS存在于简单的蛋白质- dna复合物中,表明它在古代生物分子相互作用中发挥了重要作用。CISS的一个主要结果是增强了蛋白质-核酸复合物的动力学稳定性。这些发现揭示了手性和自旋如何影响生物结合,为原始生化进化和塑造当代蛋白质功能提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信