Xiao Liu, John P. Dunne, Elizabeth J. Drenkard, Gregory C. Johnson
{"title":"Simulating Argo float trajectories and along-track physical and biogeochemical variability in the California Current System","authors":"Xiao Liu, John P. Dunne, Elizabeth J. Drenkard, Gregory C. Johnson","doi":"10.3389/fmars.2025.1481761","DOIUrl":null,"url":null,"abstract":"Trajectories of >1,600 virtual Argo profiling floats and their sampled variability in key ocean physical and biogeochemical variables are simulated using a 0.125° global ocean physical-biogeochemical model (NOAA GFDL’s MOM6-SIS2-COBALTv2) and an offline Lagrangian particle tracking algorithm. Virtual floats are deployed at 92 locations within 26-50°N, 114-132°W in the California Current System (CCS) during the summers and winters of 2008-2012 with varying sampling strategies adopted (e.g., floats are set to park and drift at different depths, and to profile at different intervals). The overall direction and spatial spreads of simulated float trajectories depend on the latitudes of deployment locations with the largest area and variability sampled by floats deployed in the central CCS. Floats drifting at shallower depths (200 m and 500 m) tend to sample larger variability associated with larger sampled area, while those drifting at 1000 m show the strongest association with eddy-like ocean features. Sensitivity experiments with varying sampling intervals suggest that spatiotemporal variability in float observables are adequately sampled with a typical 5-day or 10-day interval. Furthermore, simulated float trajectories and sampled variability are compared against 3 real float trajectories and along-track observations. Results suggest that the fidelity of both our model simulations and the prevalent Argo float sampling design are generally satisfactory in characterizing interior ocean biogeochemical variability. This study provides new insights to inform optimal float deployment planning, sampling strategies, and data interpretation.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"13 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1481761","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Trajectories of >1,600 virtual Argo profiling floats and their sampled variability in key ocean physical and biogeochemical variables are simulated using a 0.125° global ocean physical-biogeochemical model (NOAA GFDL’s MOM6-SIS2-COBALTv2) and an offline Lagrangian particle tracking algorithm. Virtual floats are deployed at 92 locations within 26-50°N, 114-132°W in the California Current System (CCS) during the summers and winters of 2008-2012 with varying sampling strategies adopted (e.g., floats are set to park and drift at different depths, and to profile at different intervals). The overall direction and spatial spreads of simulated float trajectories depend on the latitudes of deployment locations with the largest area and variability sampled by floats deployed in the central CCS. Floats drifting at shallower depths (200 m and 500 m) tend to sample larger variability associated with larger sampled area, while those drifting at 1000 m show the strongest association with eddy-like ocean features. Sensitivity experiments with varying sampling intervals suggest that spatiotemporal variability in float observables are adequately sampled with a typical 5-day or 10-day interval. Furthermore, simulated float trajectories and sampled variability are compared against 3 real float trajectories and along-track observations. Results suggest that the fidelity of both our model simulations and the prevalent Argo float sampling design are generally satisfactory in characterizing interior ocean biogeochemical variability. This study provides new insights to inform optimal float deployment planning, sampling strategies, and data interpretation.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.