Potential surge preheating: enhanced resonance from potential features

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Pankaj Saha, Yuko Urakawa
{"title":"Potential surge preheating: enhanced resonance from potential features","authors":"Pankaj Saha, Yuko Urakawa","doi":"10.1088/1475-7516/2025/04/061","DOIUrl":null,"url":null,"abstract":"We investigate the effects of local features in the inflationary potential on the preheating dynamics after inflation. We show that a small feature in the potential can enhance the resonance and bring the radiation-like state equation during preheating despite the inflationary potential being a quadratic one. Such localized features may naturally arise due to various physical effects without altering the large-scale predictions of the original model for cosmic microwave background (CMB) observables. We demonstrate that these features effectively introduce localized higher-power terms in the potential, significantly influencing the preheating dynamics — a phenomenon we term potential surge preheating. We outline the resulting modifications in energy distribution among different components. We further show that these small-scale features leave detectable imprints in the form of gravitational wave signals. These signals influence CMB measurements of the effective number of relativistic species, <italic toggle=\"yes\">N</italic>\n<sub>eff</sub>, offering a way to reconstruct the shape of the inflaton potential at small scales. Finally, we argue that these modifications to the scalar potential provide a framework to explore preheating dynamics and the fragmentation of scalar fields using simple scalar potentials.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"42 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/04/061","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the effects of local features in the inflationary potential on the preheating dynamics after inflation. We show that a small feature in the potential can enhance the resonance and bring the radiation-like state equation during preheating despite the inflationary potential being a quadratic one. Such localized features may naturally arise due to various physical effects without altering the large-scale predictions of the original model for cosmic microwave background (CMB) observables. We demonstrate that these features effectively introduce localized higher-power terms in the potential, significantly influencing the preheating dynamics — a phenomenon we term potential surge preheating. We outline the resulting modifications in energy distribution among different components. We further show that these small-scale features leave detectable imprints in the form of gravitational wave signals. These signals influence CMB measurements of the effective number of relativistic species, N eff, offering a way to reconstruct the shape of the inflaton potential at small scales. Finally, we argue that these modifications to the scalar potential provide a framework to explore preheating dynamics and the fragmentation of scalar fields using simple scalar potentials.
电势浪涌预热:电势特征增强共振
我们研究了通货膨胀势的局部特征对通货膨胀后的预热动态的影响。我们发现,尽管膨胀势是二次型的,但在预热过程中,势的一个小特征可以增强共振并产生类辐射状态方程。由于各种物理效应,这种局部特征可能会自然产生,而不会改变宇宙微波背景(CMB)观测数据的原始模型的大规模预测。我们证明,这些特征有效地在电位中引入了局部高功率项,显著影响了预热动力学-我们称之为电位浪涌预热的现象。我们概述了不同组分之间能量分布的变化。我们进一步表明,这些小尺度特征以引力波信号的形式留下了可探测的印记。这些信号影响了CMB对相对论性物质有效数量的测量,Neff,提供了一种在小尺度上重建暴胀势形状的方法。最后,我们认为这些对标量势的修正为利用简单的标量势来探索预热动力学和标量场的碎片化提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信