{"title":"Calculating the EFT likelihood via saddle-point expansion","authors":"Ji-Yuan Ke, Yun Wang, Ping He","doi":"10.1088/1475-7516/2025/04/064","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the functional approach for calculating the EFT likelihood by applying the saddle-point expansion. We demonstrate that, after suitable reformulation, the likelihood expression is consistent with the path integral required to be computed in the theory of false vacuum decay. In contrast to the saddle-point approximation, the application of the saddle-point expansion necessitates more nuanced considerations, particularly concerning the treatment of the negative eigenvalues of the second derivative of the action at the saddle point. We illustrate that a similar issue arises in the likelihood calculation, which requires approximating the original integral contour through the combination of the steepest descent contours in the field space. As a concrete example, we focus on calculating the EFT likelihood under a Gaussian distribution and propose a general procedure for computing the likelihood using the saddle-point expansion method for arbitrary partition functions. Precise computation of the likelihood will benefit Bayesian forward modeling, thereby enabling more reliable theoretical predictions.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"474 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/04/064","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we extend the functional approach for calculating the EFT likelihood by applying the saddle-point expansion. We demonstrate that, after suitable reformulation, the likelihood expression is consistent with the path integral required to be computed in the theory of false vacuum decay. In contrast to the saddle-point approximation, the application of the saddle-point expansion necessitates more nuanced considerations, particularly concerning the treatment of the negative eigenvalues of the second derivative of the action at the saddle point. We illustrate that a similar issue arises in the likelihood calculation, which requires approximating the original integral contour through the combination of the steepest descent contours in the field space. As a concrete example, we focus on calculating the EFT likelihood under a Gaussian distribution and propose a general procedure for computing the likelihood using the saddle-point expansion method for arbitrary partition functions. Precise computation of the likelihood will benefit Bayesian forward modeling, thereby enabling more reliable theoretical predictions.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.