{"title":"Catalytic Metalloradical System for Radical 1,6-C(sp3)–H Amination with Concurrent Control of Site-, Chemo-, and Enantio-selectivity","authors":"Yiling Zhu, Wan-Chen Cindy Lee, X. Peter Zhang","doi":"10.1021/jacs.5c03259","DOIUrl":null,"url":null,"abstract":"A catalytic radical process has been developed via metalloradical catalysis (MRC) for 1,6-C(sp<sup>3</sup>)–H amination with concurrent control of site-, chemo-, and enantioselectivity. Supported by an optimal <i>D</i><sub>2</sub>-symmetric chiral amidoporphyrin ligand, the Co(II)-based metalloradical system effectively catalyzes chemoselective amination of propargylic, allylic, and benzylic C–H bonds at 1,6- over 1,5-positions of alkoxysulfonyl azides, achieving high enantioselectivity. This Co(II)-catalyzed process, which operates at room temperature, is applicable to a broad range of alkoxysulfonyl azides with a high tolerance of functional groups, enabling the efficient construction of six-membered sulfamidates in high yields with excellent enantioselectivities. Comprehensive experimental investigations, complemented by computational studies, elucidate the stepwise radical mechanism underlying this transformation. The resulting six-membered cyclic sulfamidates from the enantioselective radical process can undergo stereospecific ring-opening reactions with various nucleophiles, affording γ-functionalized α-chiral amines in high yields while retaining the original enantiopurity. Since alkoxysulfonyl azides are readily synthesized from widely available alcohols through a nucleophilic azide transfer, this union of the radical and ionic processes constitutes a versatile 1,3-difunctionalization of alcohols.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"63 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c03259","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A catalytic radical process has been developed via metalloradical catalysis (MRC) for 1,6-C(sp3)–H amination with concurrent control of site-, chemo-, and enantioselectivity. Supported by an optimal D2-symmetric chiral amidoporphyrin ligand, the Co(II)-based metalloradical system effectively catalyzes chemoselective amination of propargylic, allylic, and benzylic C–H bonds at 1,6- over 1,5-positions of alkoxysulfonyl azides, achieving high enantioselectivity. This Co(II)-catalyzed process, which operates at room temperature, is applicable to a broad range of alkoxysulfonyl azides with a high tolerance of functional groups, enabling the efficient construction of six-membered sulfamidates in high yields with excellent enantioselectivities. Comprehensive experimental investigations, complemented by computational studies, elucidate the stepwise radical mechanism underlying this transformation. The resulting six-membered cyclic sulfamidates from the enantioselective radical process can undergo stereospecific ring-opening reactions with various nucleophiles, affording γ-functionalized α-chiral amines in high yields while retaining the original enantiopurity. Since alkoxysulfonyl azides are readily synthesized from widely available alcohols through a nucleophilic azide transfer, this union of the radical and ionic processes constitutes a versatile 1,3-difunctionalization of alcohols.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.