Optimized Design of Micro-TEC with Variable Cross-Section Structure

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Gang Zhan, Dongwang Yang, Kechen Tang, Yutian Liu, Chenyang Li, Ziao Wang, Weiqiang Cao, Yonggao Yan, Xinfeng Tang
{"title":"Optimized Design of Micro-TEC with Variable Cross-Section Structure","authors":"Gang Zhan, Dongwang Yang, Kechen Tang, Yutian Liu, Chenyang Li, Ziao Wang, Weiqiang Cao, Yonggao Yan, Xinfeng Tang","doi":"10.1002/adts.202401471","DOIUrl":null,"url":null,"abstract":"The increasing heat flux in microelectronic device challenges traditional cooling methods. Thermoelectric coolers (TECs) offer effective hotspot management through direct integration with microelectronic components. However, their efficiency is limited by thermoelectric properties, resulting in high power consumption and additional thermal loads. This study introduces a 3D finite element model to optimize micro-TEC with variable cross-sections. Key parameters, including cross-sectional area ratio (<i>s</i>), packing density (<i>p</i><sub>d</sub>), leg center width (<i>w</i>), leg height (<i>l</i>), and external conditions (ambient temperature <i>T</i><sub>m</sub>, heat load <i>Q</i><sub>c</sub>) are systematically analyzed. At <i>T</i><sub>m</sub> = 90 °C and <i>Q</i><sub>c</sub> = 1 W, with <i>p</i><sub>d</sub> = 120 legs cm<sup>−</sup><sup>2</sup>, <i>l</i> = 0.5 mm and identical TE leg volume, the novel design reduces power consumption from 1.97 W in traditional designs to 1.56 W, a reduction of 20.8%. Further optimization achieved a minimum power consumption of 1.43 W at <i>T</i><sub>m</sub> = 90 °C, <i>Q</i><sub>c</sub> = 1 W, <i>p</i><sub>d</sub> = 528 legs cm<sup>−</sup><sup>2</sup>, <i>w</i> = 0.2 mm, <i>l</i> = 0.2 mm and <i>s</i> = 6.85. These findings provide a framework for reducing TEC power consumption and material costs, advancing efficient cooling in microelectronics.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401471","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing heat flux in microelectronic device challenges traditional cooling methods. Thermoelectric coolers (TECs) offer effective hotspot management through direct integration with microelectronic components. However, their efficiency is limited by thermoelectric properties, resulting in high power consumption and additional thermal loads. This study introduces a 3D finite element model to optimize micro-TEC with variable cross-sections. Key parameters, including cross-sectional area ratio (s), packing density (pd), leg center width (w), leg height (l), and external conditions (ambient temperature Tm, heat load Qc) are systematically analyzed. At Tm = 90 °C and Qc = 1 W, with pd = 120 legs cm2, l = 0.5 mm and identical TE leg volume, the novel design reduces power consumption from 1.97 W in traditional designs to 1.56 W, a reduction of 20.8%. Further optimization achieved a minimum power consumption of 1.43 W at Tm = 90 °C, Qc = 1 W, pd = 528 legs cm2, w = 0.2 mm, l = 0.2 mm and s = 6.85. These findings provide a framework for reducing TEC power consumption and material costs, advancing efficient cooling in microelectronics.

Abstract Image

具有可变截面结构的 Micro-TEC 优化设计
微电子器件热流的不断增加对传统的冷却方法提出了挑战。热电冷却器(tec)通过直接集成微电子元件提供有效的热点管理。然而,它们的效率受到热电特性的限制,导致高功耗和额外的热负荷。本文采用三维有限元模型对变截面微型tec进行优化。系统分析了截面积比(s)、填料密度(pd)、支腿中心宽度(w)、支腿高度(l)、外部条件(环境温度Tm、热负荷Qc)等关键参数。在Tm = 90°C, Qc = 1 W, pd = 120支腿cm - 2, l = 0.5 mm, TE支腿体积相同的情况下,新设计将功耗从传统设计的1.97 W降低到1.56 W,降低了20.8%。在Tm = 90°C、Qc = 1 W、pd = 528腿cm - 2、W = 0.2 mm、l = 0.2 mm和s = 6.85条件下,进一步优化实现了1.43 W的最小功耗。这些发现为降低TEC功耗和材料成本提供了一个框架,促进了微电子领域的高效冷却。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信