Joe H. Winter, Reyhan Ay, Bernd Braunecker, A. M. Cook
{"title":"Observable-enriched entanglement","authors":"Joe H. Winter, Reyhan Ay, Bernd Braunecker, A. M. Cook","doi":"10.1103/physrevb.111.165143","DOIUrl":null,"url":null,"abstract":"We introduce methods of characterizing entanglement on the example of the quantum skyrmion Hall effect, in which entanglement measures are enriched by the matrix representations of operators for observables. These observable operator matrix representations can enrich the partial trace over subsets of a system's degrees of freedom, yielding reduced density matrices useful in computing various measures of entanglement, which also preserve the observable expectation value. We focus here on applying these methods to compute entanglement spectra, unveiling bulk-boundary correspondences of canonical four-band models for topological skyrmion phases and their connection to simpler forms of bulk-boundary correspondence. Given the fundamental roles entanglement signatures and observables play in the study of quantum systems and the fundamental generalization of the interpretation and treatment of spin within the framework of the quantum skyrmion Hall effect, concepts of observable-enriched entanglement introduced here are broadly applicable to myriad problems of quantum systems. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"6 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.165143","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce methods of characterizing entanglement on the example of the quantum skyrmion Hall effect, in which entanglement measures are enriched by the matrix representations of operators for observables. These observable operator matrix representations can enrich the partial trace over subsets of a system's degrees of freedom, yielding reduced density matrices useful in computing various measures of entanglement, which also preserve the observable expectation value. We focus here on applying these methods to compute entanglement spectra, unveiling bulk-boundary correspondences of canonical four-band models for topological skyrmion phases and their connection to simpler forms of bulk-boundary correspondence. Given the fundamental roles entanglement signatures and observables play in the study of quantum systems and the fundamental generalization of the interpretation and treatment of spin within the framework of the quantum skyrmion Hall effect, concepts of observable-enriched entanglement introduced here are broadly applicable to myriad problems of quantum systems. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter