Valentin Semkin, Aleksandr Shabanov, Kirill Kapralov, Mikhail Kashchenko, Alexander Sobolev, Ilya Mazurenko, Vladislav Myltsev, Dmitry Mylnikov, Egor Nikulin, Alexander Chernov, Ekaterina Kameneva, Alexey Bocharov, Dmitry Svintsov
{"title":"Multifunctional 2D Infrared Photodetectors Enabled by Asymmetric Singular Metasurfaces","authors":"Valentin Semkin, Aleksandr Shabanov, Kirill Kapralov, Mikhail Kashchenko, Alexander Sobolev, Ilya Mazurenko, Vladislav Myltsev, Dmitry Mylnikov, Egor Nikulin, Alexander Chernov, Ekaterina Kameneva, Alexey Bocharov, Dmitry Svintsov","doi":"10.1002/adom.202403189","DOIUrl":null,"url":null,"abstract":"<p>2D materials offering ultrafast photoresponse suffer from low intrinsic absorbance, especially in the mid-infrared wavelength range. Challenges in 2d material doping further complicate the creation of light-sensitive <i>p</i> − <i>n</i> junctions. Here, a graphene-based infrared detector is experimentally demonstrated with simultaneously enhanced absorption and strong structural asymmetry enabling zero-bias photocurrent. A key element for those properties is an asymmetric singular metasurface (ASMS) atop graphene with keen metal wedges providing singular enhancement of local absorbance. The ASMS geometry predefines extra device functionalities. The structures with connected metallic wedges demonstrate polarization ratios up to 200 in a broad range of carrier densities at a wavelength of 8.6 µm. The structures with isolated wedges display gate-controlled switching between polarization-discerning and polarization-stable photoresponse, a highly desirable yet scarce property for polarized imaging.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 12","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202403189","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
2D materials offering ultrafast photoresponse suffer from low intrinsic absorbance, especially in the mid-infrared wavelength range. Challenges in 2d material doping further complicate the creation of light-sensitive p − n junctions. Here, a graphene-based infrared detector is experimentally demonstrated with simultaneously enhanced absorption and strong structural asymmetry enabling zero-bias photocurrent. A key element for those properties is an asymmetric singular metasurface (ASMS) atop graphene with keen metal wedges providing singular enhancement of local absorbance. The ASMS geometry predefines extra device functionalities. The structures with connected metallic wedges demonstrate polarization ratios up to 200 in a broad range of carrier densities at a wavelength of 8.6 µm. The structures with isolated wedges display gate-controlled switching between polarization-discerning and polarization-stable photoresponse, a highly desirable yet scarce property for polarized imaging.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.