Clara Maurel, Elise Clavé, Jérôme Gattacecca, Minoru Uehara, Elias N. Mansbach, Timothy J. McCoy, Benjamin P. Weiss
{"title":"Magnetization of Iron Meteorites up to the Meter in Size as Possible Analogs for Asteroid Psyche","authors":"Clara Maurel, Elise Clavé, Jérôme Gattacecca, Minoru Uehara, Elias N. Mansbach, Timothy J. McCoy, Benjamin P. Weiss","doi":"10.1029/2024JE008810","DOIUrl":null,"url":null,"abstract":"<p>Meteorite paleomagnetic studies indicate planetesimal generated magnetic fields, but spacecraft magnetic measurements have yet to identify asteroidal natural remanent magnetization (NRM). This apparent discrepancy is of particular interest in the context of the NASA Psyche mission, which will search for evidence of past magnetic activity of the metal-rich asteroid (16) Psyche. Here, we aim to test whether the NRM of meteorites inevitably drops below detectable values as specimen size increases, which could explain why asteroidal NRMs could never be detected. We focus on iron meteorites as possible analogs to (16) Psyche's constituent material. To do so, we measure the remanent magnetic field and estimate the NRM of samples of four iron meteorites with volumes between mm<sup>3</sup> and m<sup>3</sup>. We find that their estimated NRMs decrease with increasing sample size but appear to plateau. These data are compatible with the idea that the bulk NRM of increasingly large objects becomes dominated by the fraction of this NRM produced by assemblages of magnetic minerals sharing a common magnetization direction. Moreover, all m<sup>3</sup>-sized meteorites carry NRMs that are two orders of magnitude above the detectability limit of the Psyche Magnetometer, three of which are possibly pre-terrestrial. These data, acquired on some of the largest masses of iron meteorites available on Earth, support the range of plausible NRM values for km-size regions of (16) Psyche, used to establish the spacecraft Magnetometer's performance requirements. Nevertheless, large-scale events such as brecciation of the asteroid following magnetization acquisition could always lower the asteroid's NRM below the detectability limit.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008810","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008810","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Meteorite paleomagnetic studies indicate planetesimal generated magnetic fields, but spacecraft magnetic measurements have yet to identify asteroidal natural remanent magnetization (NRM). This apparent discrepancy is of particular interest in the context of the NASA Psyche mission, which will search for evidence of past magnetic activity of the metal-rich asteroid (16) Psyche. Here, we aim to test whether the NRM of meteorites inevitably drops below detectable values as specimen size increases, which could explain why asteroidal NRMs could never be detected. We focus on iron meteorites as possible analogs to (16) Psyche's constituent material. To do so, we measure the remanent magnetic field and estimate the NRM of samples of four iron meteorites with volumes between mm3 and m3. We find that their estimated NRMs decrease with increasing sample size but appear to plateau. These data are compatible with the idea that the bulk NRM of increasingly large objects becomes dominated by the fraction of this NRM produced by assemblages of magnetic minerals sharing a common magnetization direction. Moreover, all m3-sized meteorites carry NRMs that are two orders of magnitude above the detectability limit of the Psyche Magnetometer, three of which are possibly pre-terrestrial. These data, acquired on some of the largest masses of iron meteorites available on Earth, support the range of plausible NRM values for km-size regions of (16) Psyche, used to establish the spacecraft Magnetometer's performance requirements. Nevertheless, large-scale events such as brecciation of the asteroid following magnetization acquisition could always lower the asteroid's NRM below the detectability limit.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.