Liang Xiong, Ziyi Xiong, Juan Hua, Qi Chen, Dandan Wang
{"title":"Mechanism of Nano-Microplastics Exposure-Induced Myocardial Fibrosis: DKK3-Mediated Mitophagy Dysfunction and Pyroptosis","authors":"Liang Xiong, Ziyi Xiong, Juan Hua, Qi Chen, Dandan Wang","doi":"10.1002/jbt.70245","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Nano-microplastics (NMPs), as environmental pollutants, are widely present in nature and pose potential threats to biological health. This study aims to investigate the mechanisms by which NMPs inhibit mitophagy through the suppression of dickkopf-related protein 3 (DKK3) expression, leading to NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-mediated cardiomyocyte pyroptosis and promoting myocardial fibrosis. Healthy adult male C57BL/6 mice were administered NMP solution via gavage, and their cardiac function was monitored. The results showed that NMP exposure significantly reduced left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) and increased the extent of myocardial fibrosis. Transcriptome sequencing identified 14 differentially expressed genes (DEGs), including MYL7. Using the random forest algorithm and functional enrichment analysis, DKK3 was identified as a key gene. In Vitro experiments further confirmed that NMPs downregulate DKK3 expression, thereby inhibiting mitophagy and promoting cardiomyocyte pyroptosis. This study elucidates the molecular mechanisms by which NMPs induce myocardial fibrosis and provides new theoretical bases and molecular targets for the diagnosis and treatment of heart diseases.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70245","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nano-microplastics (NMPs), as environmental pollutants, are widely present in nature and pose potential threats to biological health. This study aims to investigate the mechanisms by which NMPs inhibit mitophagy through the suppression of dickkopf-related protein 3 (DKK3) expression, leading to NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-mediated cardiomyocyte pyroptosis and promoting myocardial fibrosis. Healthy adult male C57BL/6 mice were administered NMP solution via gavage, and their cardiac function was monitored. The results showed that NMP exposure significantly reduced left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) and increased the extent of myocardial fibrosis. Transcriptome sequencing identified 14 differentially expressed genes (DEGs), including MYL7. Using the random forest algorithm and functional enrichment analysis, DKK3 was identified as a key gene. In Vitro experiments further confirmed that NMPs downregulate DKK3 expression, thereby inhibiting mitophagy and promoting cardiomyocyte pyroptosis. This study elucidates the molecular mechanisms by which NMPs induce myocardial fibrosis and provides new theoretical bases and molecular targets for the diagnosis and treatment of heart diseases.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.