Multisource Heterogeneous Data Fusion Methods Driven by Digital Twin on Basis of Prophet Algorithm

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
IET Software Pub Date : 2025-04-22 DOI:10.1049/sfw2/5041019
Min Li
{"title":"Multisource Heterogeneous Data Fusion Methods Driven by Digital Twin on Basis of Prophet Algorithm","authors":"Min Li","doi":"10.1049/sfw2/5041019","DOIUrl":null,"url":null,"abstract":"<div>\n <p>With the development of intelligent manufacturing and the wider application of the Internet of Things (IoT), it is crucial to fuse heterogeneous sensor data from multiple sources. However, the current data fusion methods still have problems, such as low accuracy of fused data, insufficient data integrity, poor data fusion efficiency, and poor scalability of fusion methods. In response to these issues, this article explores a multisource heterogeneous data fusion method based on the Prophet algorithm digital twin drive to improve the fusion effect of sensor data and provide more support for subsequent decision-making. The article first used curve and sequence alignment to extract data features and then analyzed the trend of data changes using the Prophet algorithm. Afterward, this article constructed a digital twin model to provide analytical views and data services. In conclusion, this paper used tensor decomposition to merge text and image data from sensor data. Deep learning algorithms and Kalman filtering techniques were also examined to confirm the efficacy of data fusion under the Prophet algorithm. The experimental results showed that after fusing the data using the Prophet algorithm, the average accuracy can reach 92.63%, while the average resource utilization at this time was only 9.97%. The results showed that combining Prophet with digital twin technology can achieve higher accuracy, fusion efficiency, and better scalability. The research in this paper can provide new ideas and means for the fusion and analysis of heterogeneous data from multiple sources.</p>\n </div>","PeriodicalId":50378,"journal":{"name":"IET Software","volume":"2025 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sfw2/5041019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Software","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sfw2/5041019","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of intelligent manufacturing and the wider application of the Internet of Things (IoT), it is crucial to fuse heterogeneous sensor data from multiple sources. However, the current data fusion methods still have problems, such as low accuracy of fused data, insufficient data integrity, poor data fusion efficiency, and poor scalability of fusion methods. In response to these issues, this article explores a multisource heterogeneous data fusion method based on the Prophet algorithm digital twin drive to improve the fusion effect of sensor data and provide more support for subsequent decision-making. The article first used curve and sequence alignment to extract data features and then analyzed the trend of data changes using the Prophet algorithm. Afterward, this article constructed a digital twin model to provide analytical views and data services. In conclusion, this paper used tensor decomposition to merge text and image data from sensor data. Deep learning algorithms and Kalman filtering techniques were also examined to confirm the efficacy of data fusion under the Prophet algorithm. The experimental results showed that after fusing the data using the Prophet algorithm, the average accuracy can reach 92.63%, while the average resource utilization at this time was only 9.97%. The results showed that combining Prophet with digital twin technology can achieve higher accuracy, fusion efficiency, and better scalability. The research in this paper can provide new ideas and means for the fusion and analysis of heterogeneous data from multiple sources.

Abstract Image

基于先知算法的数字孪生驱动多源异构数据融合方法
随着智能制造的发展和物联网(IoT)的广泛应用,融合多源异构传感器数据至关重要。然而,目前的数据融合方法仍然存在融合数据精度低、数据完整性不足、数据融合效率差、融合方法可扩展性差等问题。针对这些问题,本文探索了一种基于Prophet算法数字双驱动的多源异构数据融合方法,以提高传感器数据的融合效果,为后续决策提供更多支持。本文首先利用曲线和序列比对提取数据特征,然后利用Prophet算法分析数据变化趋势。随后,本文构建了一个数字孪生模型,以提供分析视图和数据服务。综上所述,本文采用张量分解对传感器数据中的文本和图像数据进行合并。还研究了深度学习算法和卡尔曼滤波技术,以证实Prophet算法下数据融合的有效性。实验结果表明,使用Prophet算法融合数据后,平均准确率可达92.63%,而此时的平均资源利用率仅为9.97%。结果表明,将Prophet与数字孪生技术相结合可以实现更高的精度、融合效率和更好的可扩展性。本文的研究为多源异构数据的融合与分析提供了新的思路和手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Software
IET Software 工程技术-计算机:软件工程
CiteScore
4.20
自引率
0.00%
发文量
27
审稿时长
9 months
期刊介绍: IET Software publishes papers on all aspects of the software lifecycle, including design, development, implementation and maintenance. The focus of the journal is on the methods used to develop and maintain software, and their practical application. Authors are especially encouraged to submit papers on the following topics, although papers on all aspects of software engineering are welcome: Software and systems requirements engineering Formal methods, design methods, practice and experience Software architecture, aspect and object orientation, reuse and re-engineering Testing, verification and validation techniques Software dependability and measurement Human systems engineering and human-computer interaction Knowledge engineering; expert and knowledge-based systems, intelligent agents Information systems engineering Application of software engineering in industry and commerce Software engineering technology transfer Management of software development Theoretical aspects of software development Machine learning Big data and big code Cloud computing Current Special Issue. Call for papers: Knowledge Discovery for Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_KDSD.pdf Big Data Analytics for Sustainable Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_BDASSD.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信