Improving execution concurrency in partial-order plans via block-substitution

IF 2 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Sabah Binte Noor, Fazlul Hasan Siddiqui
{"title":"Improving execution concurrency in partial-order plans via block-substitution","authors":"Sabah Binte Noor,&nbsp;Fazlul Hasan Siddiqui","doi":"10.1007/s10458-025-09706-8","DOIUrl":null,"url":null,"abstract":"<div><p>Partial-order plans in AI planning facilitate execution flexibility and several other tasks, such as plan reuse, modification, and decomposition, due to their less constrained nature. A Partial-Order Plan (POP) specifies partial-order over actions, providing the flexibility of executing unordered actions in different sequences. This flexibility can be further extended by enabling parallel execution of actions in the POP to reduce its overall execution time. While extensive studies exist on improving the flexibility of a POP by optimizing its action orderings through plan deordering and reordering, there has been limited focus on the flexibility of executing actions concurrently in a plan. Flexibility of executing actions concurrently, referred to as concurrency, in a POP can be achieved by incorporating action non-concurrency constraints, specifying which actions can not be executed in parallel. This work establishes the necessary and sufficient conditions for non-concurrency constraints between two actions or two subplans with respect to a planning task. We also introduce an algorithm to improve a plan’s concurrency by optimizing resource utilization through substitutions of the plan’s subplans with respect to the corresponding planning task. Our algorithm employs block deordering that eliminates orderings in a POP by encapsulating coherent actions in blocks, and then exploits blocks as candidate subplans for substitutions. Experiments over the benchmark problems from International Planning Competitions (IPC) exhibit considerable improvement in plan concurrency.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"39 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-025-09706-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Partial-order plans in AI planning facilitate execution flexibility and several other tasks, such as plan reuse, modification, and decomposition, due to their less constrained nature. A Partial-Order Plan (POP) specifies partial-order over actions, providing the flexibility of executing unordered actions in different sequences. This flexibility can be further extended by enabling parallel execution of actions in the POP to reduce its overall execution time. While extensive studies exist on improving the flexibility of a POP by optimizing its action orderings through plan deordering and reordering, there has been limited focus on the flexibility of executing actions concurrently in a plan. Flexibility of executing actions concurrently, referred to as concurrency, in a POP can be achieved by incorporating action non-concurrency constraints, specifying which actions can not be executed in parallel. This work establishes the necessary and sufficient conditions for non-concurrency constraints between two actions or two subplans with respect to a planning task. We also introduce an algorithm to improve a plan’s concurrency by optimizing resource utilization through substitutions of the plan’s subplans with respect to the corresponding planning task. Our algorithm employs block deordering that eliminates orderings in a POP by encapsulating coherent actions in blocks, and then exploits blocks as candidate subplans for substitutions. Experiments over the benchmark problems from International Planning Competitions (IPC) exhibit considerable improvement in plan concurrency.

通过块替换提高部分顺序计划的执行并发性
人工智能规划中的部分顺序计划由于其较少的约束性质,促进了执行灵活性和其他一些任务,如计划重用、修改和分解。部分顺序计划(POP)指定操作的部分顺序,从而提供以不同顺序执行无序操作的灵活性。通过支持在POP中并行执行操作以减少其总体执行时间,可以进一步扩展这种灵活性。虽然已有大量研究通过计划的无序和重新排序来优化POP的行动排序,从而提高其灵活性,但对计划中同时执行行动的灵活性的关注有限。在POP中,可以通过合并操作非并发性约束(指定哪些操作不能并行执行)来实现并发执行操作的灵活性(称为并发性)。这项工作建立了关于一个计划任务的两个操作或两个子计划之间的非并发约束的充分必要条件。我们还介绍了一种算法,通过替换计划的子计划来优化资源利用率,从而提高计划的并发性。我们的算法采用块去排序,通过将连贯的操作封装在块中来消除POP中的顺序,然后利用块作为替代的候选子计划。在国际规划竞赛(IPC)的基准问题上进行的实验表明,计划并发性有了相当大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Autonomous Agents and Multi-Agent Systems
Autonomous Agents and Multi-Agent Systems 工程技术-计算机:人工智能
CiteScore
6.00
自引率
5.30%
发文量
48
审稿时长
>12 weeks
期刊介绍: This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to: Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent) Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning. Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems. Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness Significant, novel applications of agent technology Comprehensive reviews and authoritative tutorials of research and practice in agent systems Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信