{"title":"Enhancing, Refining, and Fusing: Towards Robust Multiscale and Dense Ship Detection","authors":"Congxia Zhao;Xiongjun Fu;Jian Dong;Shen Cao;Chunyan Zhang","doi":"10.1109/JSTARS.2025.3556893","DOIUrl":null,"url":null,"abstract":"Synthetic aperture radar (SAR) imaging, celebrated for its high resolution, all-weather capability, and day-night operability, is indispensable for maritime applications. However, ship detection in SAR imagery faces significant challenges, including complex backgrounds, densely arranged targets, and large scale variations. To address these issues, we propose a novel framework, Center-Aware SAR Ship Detector (CASS-Det), designed for robust multiscale and densely packed ship detection. CASS-Det integrates three key innovations: 1) a center enhancement module (CEM) that employs rotational convolution to emphasize ship centers, improving localization while suppressing background interference; 2) a neighbor attention module that leverages cross-layer dependencies to refine ship boundaries in densely populated scenes; and 3) a cross-connected feature pyramid network (CC-FPN) that enhances multiscale feature fusion by integrating shallow and deep features. The proposed model achieves mean Average Precision of 99.2%, 93.1%, and 82.1% on the SSDD, HRSID, and LS-SSDD datasets, surpassing the second-best methods by 1.2%, 1.8%, and 1.8%, respectively, which demonstrates its effectiveness.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"9919-9933"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10946877","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10946877/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic aperture radar (SAR) imaging, celebrated for its high resolution, all-weather capability, and day-night operability, is indispensable for maritime applications. However, ship detection in SAR imagery faces significant challenges, including complex backgrounds, densely arranged targets, and large scale variations. To address these issues, we propose a novel framework, Center-Aware SAR Ship Detector (CASS-Det), designed for robust multiscale and densely packed ship detection. CASS-Det integrates three key innovations: 1) a center enhancement module (CEM) that employs rotational convolution to emphasize ship centers, improving localization while suppressing background interference; 2) a neighbor attention module that leverages cross-layer dependencies to refine ship boundaries in densely populated scenes; and 3) a cross-connected feature pyramid network (CC-FPN) that enhances multiscale feature fusion by integrating shallow and deep features. The proposed model achieves mean Average Precision of 99.2%, 93.1%, and 82.1% on the SSDD, HRSID, and LS-SSDD datasets, surpassing the second-best methods by 1.2%, 1.8%, and 1.8%, respectively, which demonstrates its effectiveness.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.