Fault Detection System for Bearings in Electric Motors using Variational Auto Encoders

IF 1.3 4区 工程技术 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Alonso Menéndez-González;Luis Magadán;Juan Carlos Granda Candás;Francisco José Suárez Alonso
{"title":"Fault Detection System for Bearings in Electric Motors using Variational Auto Encoders","authors":"Alonso Menéndez-González;Luis Magadán;Juan Carlos Granda Candás;Francisco José Suárez Alonso","doi":"10.1109/TLA.2025.10974368","DOIUrl":null,"url":null,"abstract":"Electric motors play a fundamental role in essential industries such as energy, transport and aeronautics, which require efficient maintenance to ensure productivity. Bearings are the most common failure point, making Prognostics and Health Management of this component crucial for Industry 4.0. This paper introduces a Fault Detection System based on Variational Auto Encoders (VAEs) trained exclusively on healthy vibration data from two public datasets. By analysing the resultant Gaussian distributions the system identifies early indicators of faults. This approach overcomes the common challenge of requiring faulty data for training, while also making it applicable to any other dataset. The study reveals an initial degradation stage in the training datasets, a critical oversight in previous studies, providing a more accurate depiction of bearing degradation profiles.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":"23 5","pages":"371-379"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10974368","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10974368/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Electric motors play a fundamental role in essential industries such as energy, transport and aeronautics, which require efficient maintenance to ensure productivity. Bearings are the most common failure point, making Prognostics and Health Management of this component crucial for Industry 4.0. This paper introduces a Fault Detection System based on Variational Auto Encoders (VAEs) trained exclusively on healthy vibration data from two public datasets. By analysing the resultant Gaussian distributions the system identifies early indicators of faults. This approach overcomes the common challenge of requiring faulty data for training, while also making it applicable to any other dataset. The study reveals an initial degradation stage in the training datasets, a critical oversight in previous studies, providing a more accurate depiction of bearing degradation profiles.
基于变分自动编码器的电机轴承故障检测系统
电机在能源、运输和航空等重要行业中发挥着基础性作用,这些行业需要高效的维护来确保生产率。轴承是最常见的故障点,因此该组件的诊断和健康管理对于工业 4.0 至关重要。本文介绍了一种基于变异自动编码器(VAE)的故障检测系统,该系统专门针对两个公共数据集中的健康振动数据进行训练。通过分析由此产生的高斯分布,该系统可识别故障的早期指标。这种方法克服了需要故障数据进行训练的常见挑战,同时也适用于任何其他数据集。该研究揭示了训练数据集中的初始退化阶段,这在以往的研究中是一个关键的疏忽,从而更准确地描述了轴承退化的轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Latin America Transactions
IEEE Latin America Transactions COMPUTER SCIENCE, INFORMATION SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
3.50
自引率
7.70%
发文量
192
审稿时长
3-8 weeks
期刊介绍: IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信