Ligang Xu , Yuqi Li , Yongchao shi , Yachao Yan , Wengui Yu , Huajie Luo , Jipeng Fu , Haiyan Zheng , Mingxue Tang
{"title":"Understanding the correlation between ion transport and side chains in polymer electrolyte","authors":"Ligang Xu , Yuqi Li , Yongchao shi , Yachao Yan , Wengui Yu , Huajie Luo , Jipeng Fu , Haiyan Zheng , Mingxue Tang","doi":"10.1016/j.jmro.2025.100200","DOIUrl":null,"url":null,"abstract":"<div><div>The rise of the new energy market has driven the rapid development of solid-state batteries (SSBs). Polymer electrolytes, due to their excellent interfacial compatibility and high safety, have brought new opportunities to SSBs. We report a polymer side-chain design strategy that combines ionic liquids and low-molecular-weight ether-based molecules into a copolymer electrolyte (CPE). Using nuclear magnetic resonance (NMR) techniques, we investigated the spatial distribution of lithium ions (Li<sup>+</sup>) and the correlations between anions of different conformations in the CPE. This study found that the introduced ionic liquids and high-freedom ether groups enable rapid ion migration, resulting in an ion conductivity of 1.44 × 10<sup>–4</sup> S cm<sup>-1</sup> at 25 °C. The dual lithium symmetric battery based on CPE can cycle more than1000 h at a current density of 0.3 mA cm<sup>-2</sup>, while the LFP|CPE|Li full battery presents high retention after 120 cycles even at ultra-high loading (12.9 mg cm<sup>-2</sup>) and a high current density of 1 C.</div></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"23 ","pages":"Article 100200"},"PeriodicalIF":2.6240,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441025000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The rise of the new energy market has driven the rapid development of solid-state batteries (SSBs). Polymer electrolytes, due to their excellent interfacial compatibility and high safety, have brought new opportunities to SSBs. We report a polymer side-chain design strategy that combines ionic liquids and low-molecular-weight ether-based molecules into a copolymer electrolyte (CPE). Using nuclear magnetic resonance (NMR) techniques, we investigated the spatial distribution of lithium ions (Li+) and the correlations between anions of different conformations in the CPE. This study found that the introduced ionic liquids and high-freedom ether groups enable rapid ion migration, resulting in an ion conductivity of 1.44 × 10–4 S cm-1 at 25 °C. The dual lithium symmetric battery based on CPE can cycle more than1000 h at a current density of 0.3 mA cm-2, while the LFP|CPE|Li full battery presents high retention after 120 cycles even at ultra-high loading (12.9 mg cm-2) and a high current density of 1 C.