Construction, Lax integrability, bilinearization and multi-soliton solutions of a defocusing/focusing nonlocal extended modified Korteweg-de Vries equation

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Hao-Dong Liu, Bo Tian, Xiao-Tian Gao, Hong-Wen Shan
{"title":"Construction, Lax integrability, bilinearization and multi-soliton solutions of a defocusing/focusing nonlocal extended modified Korteweg-de Vries equation","authors":"Hao-Dong Liu,&nbsp;Bo Tian,&nbsp;Xiao-Tian Gao,&nbsp;Hong-Wen Shan","doi":"10.1016/j.physleta.2025.130528","DOIUrl":null,"url":null,"abstract":"<div><div>Certain integrable nonlocal modified Korteweg-de Vries (mKdV)-type equations have been recently studied, which can be used on the atmospheric science and oceanic dynamics. In this study, a defocusing/focusing nonlocal extended mKdV equation is constructed via the Ablowitz-Kaup-Newell-Segur (AKNS) procedure. We also discuss the Lax integrability of that equation. By virtue of the improved Hirota bilinear method, some mutli-soliton solutions and bilinear forms are obtained. Profiles of certain multi-soliton solutions are shown graphically: <span><span>(1)</span></span> certain periodic solitons of that equation are shown; <span><span>(2)</span></span> certain quasi-periodic solitons of that equation are presented.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"547 ","pages":"Article 130528"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125003081","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Certain integrable nonlocal modified Korteweg-de Vries (mKdV)-type equations have been recently studied, which can be used on the atmospheric science and oceanic dynamics. In this study, a defocusing/focusing nonlocal extended mKdV equation is constructed via the Ablowitz-Kaup-Newell-Segur (AKNS) procedure. We also discuss the Lax integrability of that equation. By virtue of the improved Hirota bilinear method, some mutli-soliton solutions and bilinear forms are obtained. Profiles of certain multi-soliton solutions are shown graphically: (1) certain periodic solitons of that equation are shown; (2) certain quasi-periodic solitons of that equation are presented.
散焦/聚焦非局部扩展修正Korteweg-de Vries方程的构造、Lax可积性、双线性化和多孤子解
最近研究了某些可积分的非局部修正 Korteweg-de Vries(mKdV)型方程,这些方程可用于大气科学和海洋动力学。在本研究中,我们通过 Ablowitz-Kaup-Newell-Segur (AKNS) 程序构建了一个去焦/聚焦非局部扩展 mKdV 方程。我们还讨论了该方程的拉克斯可积分性。通过改进的 Hirota 双线性方法,我们得到了一些多孑L解和双线性形式。某些多孑子解的剖面以图形显示:(1) 该方程的某些周期孑子;(2) 该方程的某些准周期孑子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信