Renjie Lv , Wenwen Chang , Guanghui Yan , Muhammad Tariq Sadiq , Wenchao Nie , Lei Zheng
{"title":"Enhanced classification of motor imagery EEG signals using spatio-temporal representations","authors":"Renjie Lv , Wenwen Chang , Guanghui Yan , Muhammad Tariq Sadiq , Wenchao Nie , Lei Zheng","doi":"10.1016/j.ins.2025.122221","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning has shown promising results in motor imagery brain-computer interfaces. However, most existing methods fail to account for the topological relationships between electrodes and the nonlinear features of electroencephalogram (EEG) signals. To address this, we propose a model combining Gramian Angular Fields (GAF) and Phase-Locking Value (PLV) with a parallel convolutional neural network (CNN). GAF captures time-domain nonlinear features, while PLV represents spatial features based on electrode topology. Comparative experiments between the end-to-end parallel CNN model and the model with spatiotemporal feature representation demonstrate that considering both time-domain correlations and electrode topology significantly enhances model performance. Furthermore, when separately evaluating the temporal and spatial features of EEG signals, the results confirm that jointly considering spatiotemporal features leads to a substantial improvement. On the Physionet dataset, our model achieves an accuracy of 99.73% in binary classification tasks and 83.37% in four-class classification tasks, showing improvement over the comparison algorithms used in the paper.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"714 ","pages":"Article 122221"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525003536","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning has shown promising results in motor imagery brain-computer interfaces. However, most existing methods fail to account for the topological relationships between electrodes and the nonlinear features of electroencephalogram (EEG) signals. To address this, we propose a model combining Gramian Angular Fields (GAF) and Phase-Locking Value (PLV) with a parallel convolutional neural network (CNN). GAF captures time-domain nonlinear features, while PLV represents spatial features based on electrode topology. Comparative experiments between the end-to-end parallel CNN model and the model with spatiotemporal feature representation demonstrate that considering both time-domain correlations and electrode topology significantly enhances model performance. Furthermore, when separately evaluating the temporal and spatial features of EEG signals, the results confirm that jointly considering spatiotemporal features leads to a substantial improvement. On the Physionet dataset, our model achieves an accuracy of 99.73% in binary classification tasks and 83.37% in four-class classification tasks, showing improvement over the comparison algorithms used in the paper.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.