{"title":"Deep unsupervised clustering by information maximization on Gaussian mixture autoencoders","authors":"Peng Wu , Li Pan","doi":"10.1016/j.ins.2025.122215","DOIUrl":null,"url":null,"abstract":"<div><div>Clustering has been extensively studied in data mining and machine learning, with numerous applications across domains. In this paper, we propose the Gaussian Mixture Autoencoder (GMAE), a deep clustering method that integrates a probabilistic Autoencoder (AE) with a Gaussian Mixture Model (GMM). GMAE trains the GMM to model the latent representation distribution of the AE and further regularizes the aggregated posterior distribution by minimizing a KL divergence-based loss. To prevent degenerate solutions and enhance clustering performance, a negative mutual information loss is introduced in the model. Additionally, a package of strategies, including an initialization method, an adjusted loss function and an alternating iterative method, is designed to optimize the loss function effectively. Beyond clustering, GMAE can generate diverse, realistic samples for any target cluster, as it trains a decoder with reconstruction loss and adopts the GMM to regularize the latent representation distribution. Experiments on five cross-domain benchmarks demonstrate superior performance over state-of-the-art clustering methods.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"714 ","pages":"Article 122215"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525003470","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Clustering has been extensively studied in data mining and machine learning, with numerous applications across domains. In this paper, we propose the Gaussian Mixture Autoencoder (GMAE), a deep clustering method that integrates a probabilistic Autoencoder (AE) with a Gaussian Mixture Model (GMM). GMAE trains the GMM to model the latent representation distribution of the AE and further regularizes the aggregated posterior distribution by minimizing a KL divergence-based loss. To prevent degenerate solutions and enhance clustering performance, a negative mutual information loss is introduced in the model. Additionally, a package of strategies, including an initialization method, an adjusted loss function and an alternating iterative method, is designed to optimize the loss function effectively. Beyond clustering, GMAE can generate diverse, realistic samples for any target cluster, as it trains a decoder with reconstruction loss and adopts the GMM to regularize the latent representation distribution. Experiments on five cross-domain benchmarks demonstrate superior performance over state-of-the-art clustering methods.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.