Acceleration mechanism of methane hydrate dissociation in inorganic salt solutions: Experimental and molecular dynamics study

0 ENERGY & FUELS
Na Wei , Haoran Zheng , Boyun Guo , Haiyu Hu , Cong Li
{"title":"Acceleration mechanism of methane hydrate dissociation in inorganic salt solutions: Experimental and molecular dynamics study","authors":"Na Wei ,&nbsp;Haoran Zheng ,&nbsp;Boyun Guo ,&nbsp;Haiyu Hu ,&nbsp;Cong Li","doi":"10.1016/j.geoen.2025.213913","DOIUrl":null,"url":null,"abstract":"<div><div>In the exploration and exploitation of methane hydrates, the influence of inorganic salt environments on hydrate behavior is particularly pronounced. This study employs experimental methodologies to evaluate the dissociation performance of hydrates in common inorganic salt solutions, coupled with molecular dynamics simulations to investigate the dissociation mechanisms under varying types of inorganic salts (MgCl<sub>2</sub>, CaCl<sub>2</sub>, KCl, and NaCl), mass concentrations, and multi-salt coexistence systems. The findings reveal that the efficacy of inorganic salt solutions in promoting hydrate dissociation follows the order: MgCl<sub>2</sub> &gt; CaCl<sub>2</sub> &gt; KCl &gt; NaCl. The smaller ionic radius of Mg<sup>2+</sup> and its stronger adsorption capacity for water molecules facilitate ion intrusion and the disruption of the hydrate's cage-like structure. In systems where multiple inorganic salts coexist, the higher potential energy and adsorption capacity result in the dissociation-promoting ability being predominantly determined by higher-valent metal cations. This research provides valuable macro and micro perspectives on the dissociation mechanisms of methane hydrates in inorganic salt environments, holding significant implications for the development of high-performance hydrate drilling fluid systems.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"252 ","pages":"Article 213913"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025002714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In the exploration and exploitation of methane hydrates, the influence of inorganic salt environments on hydrate behavior is particularly pronounced. This study employs experimental methodologies to evaluate the dissociation performance of hydrates in common inorganic salt solutions, coupled with molecular dynamics simulations to investigate the dissociation mechanisms under varying types of inorganic salts (MgCl2, CaCl2, KCl, and NaCl), mass concentrations, and multi-salt coexistence systems. The findings reveal that the efficacy of inorganic salt solutions in promoting hydrate dissociation follows the order: MgCl2 > CaCl2 > KCl > NaCl. The smaller ionic radius of Mg2+ and its stronger adsorption capacity for water molecules facilitate ion intrusion and the disruption of the hydrate's cage-like structure. In systems where multiple inorganic salts coexist, the higher potential energy and adsorption capacity result in the dissociation-promoting ability being predominantly determined by higher-valent metal cations. This research provides valuable macro and micro perspectives on the dissociation mechanisms of methane hydrates in inorganic salt environments, holding significant implications for the development of high-performance hydrate drilling fluid systems.
无机盐溶液中甲烷水合物解离加速机理:实验与分子动力学研究
在甲烷水合物的勘探和开采过程中,无机盐环境对水合物行为的影响尤为明显。本研究采用实验方法评估水合物在常见无机盐溶液中的解离性能,并结合分子动力学模拟研究不同类型无机盐(MgCl2、CaCl2、KCl 和 NaCl)、质量浓度和多盐共存系统下的解离机制。研究结果表明,无机盐溶液在促进水合物解离方面的功效遵循以下顺序:MgCl2 > CaCl2 > KCl > NaCl。Mg2+ 的离子半径较小,对水分子的吸附能力较强,这有利于离子侵入并破坏水合物的笼状结构。在多种无机盐共存的体系中,较高的势能和吸附能力导致解离促进能力主要由高价金属阳离子决定。这项研究从宏观和微观两个角度探讨了甲烷水合物在无机盐环境中的解离机制,对开发高性能水合物钻井液系统具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信