{"title":"Elastoplastic contact behavior of multi-stage superconducting cables under tension","authors":"Zhiwen Zhou, Sitongyan Li, Zhiwen Gao","doi":"10.1016/j.physc.2025.1354727","DOIUrl":null,"url":null,"abstract":"<div><div>The superconductor cable with multi-stage twisted strands is a key component in the International Thermonuclear Experimental Reactor. These superconducting strands are composite materials with a complex microstructure. In the study, an elastoplastic constitutive model incorporating both isotropic and kinematic hardening is established to investigate the mechanical properties of the strands. The model is implemented as a user-defined material subroutine (UMAT) in the commercial finite element code ABAQUS using the fully implicit backward Euler method. Based on the analysis of the elastoplastic properties of the strands, a numerical contact model is developed to predict the contact characteristics of the multi-stage superconducting cable. The influence of helical pitch on the contact characteristics is examined by integrating the elastoplastic constitutive relations of the strands with their hierarchical helical structures. Numerical results demonstrate that the proposed model accurately describes the contact characteristics of the multi-stage superconducting cable. It is noteworthy that the elastoplastic contact force is found to be smaller than the elastic contact force. This elastoplastic contact model can be effectively used to predict the degradation of critical current in the multi-stage superconducting cable due to tensile loads.</div></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"633 ","pages":"Article 1354727"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453425000802","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The superconductor cable with multi-stage twisted strands is a key component in the International Thermonuclear Experimental Reactor. These superconducting strands are composite materials with a complex microstructure. In the study, an elastoplastic constitutive model incorporating both isotropic and kinematic hardening is established to investigate the mechanical properties of the strands. The model is implemented as a user-defined material subroutine (UMAT) in the commercial finite element code ABAQUS using the fully implicit backward Euler method. Based on the analysis of the elastoplastic properties of the strands, a numerical contact model is developed to predict the contact characteristics of the multi-stage superconducting cable. The influence of helical pitch on the contact characteristics is examined by integrating the elastoplastic constitutive relations of the strands with their hierarchical helical structures. Numerical results demonstrate that the proposed model accurately describes the contact characteristics of the multi-stage superconducting cable. It is noteworthy that the elastoplastic contact force is found to be smaller than the elastic contact force. This elastoplastic contact model can be effectively used to predict the degradation of critical current in the multi-stage superconducting cable due to tensile loads.
期刊介绍:
Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity.
The main goal of the journal is to publish:
1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods.
2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance.
3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices.
The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.