Exploring inter- and intra-modal relations in compositional zero-shot learning

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiao Zhang, Hui Chen, Haodong Jing, Yongqiang Ma, Nanning Zheng
{"title":"Exploring inter- and intra-modal relations in compositional zero-shot learning","authors":"Xiao Zhang,&nbsp;Hui Chen,&nbsp;Haodong Jing,&nbsp;Yongqiang Ma,&nbsp;Nanning Zheng","doi":"10.1016/j.neucom.2025.130213","DOIUrl":null,"url":null,"abstract":"<div><div>Compositional Zero-Shot Learning (CZSL) aims to recognize unknown compositions by leveraging learned concepts of states and objects. Prior methods have typically emphasized either inter-modal relation for multi-modal fusion, ignoring the entanglement within state–object pairs, or solely intra-modal relation for enhancing representations, neglecting the association between vision and language domains. To tackle these limitations, we propose a CZSL framework that simultaneously learns inter- and intra-modal relations to improve image-label alignment. Firstly, we explore <strong>inter-modal relation</strong> to enable image features to grasp the cross-modal information from states and objects. The image–text fusion method facilitates the modeling of text-aware image features and image-aware text features, improving the model’s compositional recognition capability. Secondly, due to the contextuality within state–object pairs, we further explore <strong>intra-modal relation</strong> to exploit semantic information from various representation subspaces, facilitating the comprehensive semantic expression of text features. Moreover, we propose a <strong>composition fusion module</strong> to establish semantic entanglement within state–object compositions. Extensive experiments demonstrate that our method significantly surpasses the state-of-the-art methods in both closed-world and open-world settings.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"639 ","pages":"Article 130213"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225008859","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Compositional Zero-Shot Learning (CZSL) aims to recognize unknown compositions by leveraging learned concepts of states and objects. Prior methods have typically emphasized either inter-modal relation for multi-modal fusion, ignoring the entanglement within state–object pairs, or solely intra-modal relation for enhancing representations, neglecting the association between vision and language domains. To tackle these limitations, we propose a CZSL framework that simultaneously learns inter- and intra-modal relations to improve image-label alignment. Firstly, we explore inter-modal relation to enable image features to grasp the cross-modal information from states and objects. The image–text fusion method facilitates the modeling of text-aware image features and image-aware text features, improving the model’s compositional recognition capability. Secondly, due to the contextuality within state–object pairs, we further explore intra-modal relation to exploit semantic information from various representation subspaces, facilitating the comprehensive semantic expression of text features. Moreover, we propose a composition fusion module to establish semantic entanglement within state–object compositions. Extensive experiments demonstrate that our method significantly surpasses the state-of-the-art methods in both closed-world and open-world settings.
探索组成零射击学习中的模态间和模态内关系
composition Zero-Shot Learning (CZSL)旨在通过学习状态和对象的概念来识别未知的组合。先前的方法通常要么强调多模态融合的模态间关系,忽略状态-对象对之间的纠缠,要么仅仅强调模态内关系来增强表征,忽略视觉和语言域之间的关联。为了解决这些限制,我们提出了一个同时学习模态间和模态内关系的CZSL框架,以改善图像标签对齐。首先,我们探索多模态关系,使图像特征能够从状态和对象中获取多模态信息。图像-文本融合方法有利于文本感知图像特征和图像感知文本特征的建模,提高了模型的成分识别能力。其次,基于状态-对象对的语境性,进一步挖掘模态内关系,从各个表示子空间中挖掘语义信息,促进文本特征的综合语义表达。此外,我们提出了一个组合融合模块来建立状态-对象组合中的语义纠缠。大量的实验表明,我们的方法在封闭世界和开放世界环境中都明显优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信