Yi Huang , Jing Jiao , Jinhua Yu , Yongping Zheng , Yuanyuan Wang
{"title":"Anatomy-inspired model for critical landmark localization in 3D spinal ultrasound volume data","authors":"Yi Huang , Jing Jiao , Jinhua Yu , Yongping Zheng , Yuanyuan Wang","doi":"10.1016/j.media.2025.103610","DOIUrl":null,"url":null,"abstract":"<div><div>Three-dimensional (3D) spinal ultrasound imaging has demonstrated its promising potential in measuring spinal deformity through recent studies, and it is more suitable for massive early screening and longitudinal follow-up of adolescent idiopathic scoliosis (AIS) compared with X-ray imaging due to its radiation-free superiority. Moreover, some deformities with low observability, such as vertebral rotation, in X-ray images can also be reflected by critical landmarks in 3D ultrasound data. In this paper, we propose a localization network (LLNet) to extract lamina in 3D ultrasound data, which has been indicated as a meaningful anatomy for measuring vertebral rotation by clinical studies. First, the LLNet skillfully establishes a parallel anatomical prior embedding branch that implicitly explores the anatomical correlation between the lamina and another anatomy with more stable observability (spinous process) during the training phase and then introduces the correlation to highlight the potential region of the lamina in the inferring one. Second, since the lamina is a tiny target, the information loss caused by continuous convolutional and pooling operations has a profound negative effect on detecting the lamina. We employ an optimization mechanism to mitigate this problem, which refines feature maps according to information from the original image and further reuses them to polish output. Furthermore, a modified global-local attention module is deployed on skip connections to mine global dependencies and contextual information to construct an effective image pattern. Extensive comparisons and ablation studies are performed on actual clinical data. Results indicate that the capability of our model is better than other outstanding detection models, and functional modules effectively contribute to this, with a 100.0 % detection success rate and an 8.9 % improvement of mean intersection over the union. Thus, our model is promising to become a helpful part of a computer-assisted diagnosis system based on 3D spinal ultrasound imaging.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"103 ","pages":"Article 103610"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525001574","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional (3D) spinal ultrasound imaging has demonstrated its promising potential in measuring spinal deformity through recent studies, and it is more suitable for massive early screening and longitudinal follow-up of adolescent idiopathic scoliosis (AIS) compared with X-ray imaging due to its radiation-free superiority. Moreover, some deformities with low observability, such as vertebral rotation, in X-ray images can also be reflected by critical landmarks in 3D ultrasound data. In this paper, we propose a localization network (LLNet) to extract lamina in 3D ultrasound data, which has been indicated as a meaningful anatomy for measuring vertebral rotation by clinical studies. First, the LLNet skillfully establishes a parallel anatomical prior embedding branch that implicitly explores the anatomical correlation between the lamina and another anatomy with more stable observability (spinous process) during the training phase and then introduces the correlation to highlight the potential region of the lamina in the inferring one. Second, since the lamina is a tiny target, the information loss caused by continuous convolutional and pooling operations has a profound negative effect on detecting the lamina. We employ an optimization mechanism to mitigate this problem, which refines feature maps according to information from the original image and further reuses them to polish output. Furthermore, a modified global-local attention module is deployed on skip connections to mine global dependencies and contextual information to construct an effective image pattern. Extensive comparisons and ablation studies are performed on actual clinical data. Results indicate that the capability of our model is better than other outstanding detection models, and functional modules effectively contribute to this, with a 100.0 % detection success rate and an 8.9 % improvement of mean intersection over the union. Thus, our model is promising to become a helpful part of a computer-assisted diagnosis system based on 3D spinal ultrasound imaging.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.