Algorithms for computing closest points for segments

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Haitao Wang
{"title":"Algorithms for computing closest points for segments","authors":"Haitao Wang","doi":"10.1016/j.comgeo.2025.102196","DOIUrl":null,"url":null,"abstract":"<div><div>Given a set <em>P</em> of <em>n</em> points and a set <em>S</em> of <em>n</em> segments in the plane, we consider the problem of computing for each segment of <em>S</em> its closest point in <em>P</em>. The previously best algorithm solves the problem in <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn><mo>/</mo><mn>3</mn></mrow></msup><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> time [Bespamyatnikh, 2003] and a lower bound (under a somewhat restricted model) <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span> has also been proved. In this paper, we present an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span> time algorithm, which matches the above lower bound. In addition, we also present data structures for solving the online version of the problem, i.e., given a query segment (or a line as a special case), find its closest point in <em>P</em>. Our new results improve the previous work.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"130 ","pages":"Article 102196"},"PeriodicalIF":0.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000343","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a set P of n points and a set S of n segments in the plane, we consider the problem of computing for each segment of S its closest point in P. The previously best algorithm solves the problem in n4/32O(logn) time [Bespamyatnikh, 2003] and a lower bound (under a somewhat restricted model) Ω(n4/3) has also been proved. In this paper, we present an O(n4/3) time algorithm, which matches the above lower bound. In addition, we also present data structures for solving the online version of the problem, i.e., given a query segment (or a line as a special case), find its closest point in P. Our new results improve the previous work.
计算线段最近点的算法
给定平面上n个点的集合P和n个线段的集合S,我们考虑计算S的每个线段在P中的最近点的问题。先前最好的算法在n4/32O(log n)时间内解决了这个问题[Bespamyatnikh, 2003],并且证明了一个下界(在某种程度上受限的模型下)Ω(n4/3)。在本文中,我们提出了一个O(n4/3)时间算法,该算法与上述下界匹配。此外,我们还提供了用于解决在线版本问题的数据结构,即给定查询段(或作为特殊情况的一行),在p中找到其最近点。我们的新结果改进了以前的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信