FedSynthCT-Brain: A federated learning framework for multi-institutional brain MRI-to-CT synthesis

IF 7 2区 医学 Q1 BIOLOGY
Ciro Benito Raggio , Mathias Krohmer Zabaleta , Nils Skupien , Oliver Blanck , Francesco Cicone , Giuseppe Lucio Cascini , Paolo Zaffino , Lucia Migliorelli , Maria Francesca Spadea
{"title":"FedSynthCT-Brain: A federated learning framework for multi-institutional brain MRI-to-CT synthesis","authors":"Ciro Benito Raggio ,&nbsp;Mathias Krohmer Zabaleta ,&nbsp;Nils Skupien ,&nbsp;Oliver Blanck ,&nbsp;Francesco Cicone ,&nbsp;Giuseppe Lucio Cascini ,&nbsp;Paolo Zaffino ,&nbsp;Lucia Migliorelli ,&nbsp;Maria Francesca Spadea","doi":"10.1016/j.compbiomed.2025.110160","DOIUrl":null,"url":null,"abstract":"<div><div>The generation of Synthetic Computed Tomography (sCT) images has become a pivotal methodology in modern clinical practice, particularly in the context of Radiotherapy (RT) treatment planning. The use of sCT enables the calculation of doses, pushing towards Magnetic Resonance Imaging (MRI) guided radiotherapy treatments. Moreover, with the introduction of MRI-Positron Emission Tomography (PET) hybrid scanners, the derivation of sCT from MRI can improve the attenuation correction of PET images.</div><div>Deep learning methods for MRI-to-sCT have shown promising results, but their reliance on single-centre training dataset limits generalisation capabilities to diverse clinical settings. Moreover, creating centralised multi-centre datasets may pose privacy concerns. To address the aforementioned issues, we introduced FedSynthCT-Brain, an approach based on the Federated Learning (FL) paradigm for MRI-to-sCT in brain imaging. This is among the first applications of FL for MRI-to-sCT, employing a cross-silo horizontal FL approach that allows multiple centres to collaboratively train a U-Net-based deep learning model. We validated our method using real multicentre data from four European and American centres, simulating heterogeneous scanner types and acquisition modalities, and tested its performance on an independent dataset from a centre outside the federation.</div><div>In the case of the unseen centre, the federated model achieved a median Mean Absolute Error (MAE) of 102.0 HU across 23 patients, with an interquartile range of 96.7–110.5 HU. The median (interquartile range) for the Structural Similarity Index (SSIM) and the Peak Signal to Noise Ratio (PNSR) were 0.89 (0.86–0.89) and 26.58 (25.52–27.42), respectively.</div><div>The analysis of the results showed acceptable performances of the federated approach, thus highlighting the potential of FL to enhance MRI-to-sCT to improve generalisability and advancing safe and equitable clinical applications while fostering collaboration and preserving data privacy.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"192 ","pages":"Article 110160"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525005116","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The generation of Synthetic Computed Tomography (sCT) images has become a pivotal methodology in modern clinical practice, particularly in the context of Radiotherapy (RT) treatment planning. The use of sCT enables the calculation of doses, pushing towards Magnetic Resonance Imaging (MRI) guided radiotherapy treatments. Moreover, with the introduction of MRI-Positron Emission Tomography (PET) hybrid scanners, the derivation of sCT from MRI can improve the attenuation correction of PET images.
Deep learning methods for MRI-to-sCT have shown promising results, but their reliance on single-centre training dataset limits generalisation capabilities to diverse clinical settings. Moreover, creating centralised multi-centre datasets may pose privacy concerns. To address the aforementioned issues, we introduced FedSynthCT-Brain, an approach based on the Federated Learning (FL) paradigm for MRI-to-sCT in brain imaging. This is among the first applications of FL for MRI-to-sCT, employing a cross-silo horizontal FL approach that allows multiple centres to collaboratively train a U-Net-based deep learning model. We validated our method using real multicentre data from four European and American centres, simulating heterogeneous scanner types and acquisition modalities, and tested its performance on an independent dataset from a centre outside the federation.
In the case of the unseen centre, the federated model achieved a median Mean Absolute Error (MAE) of 102.0 HU across 23 patients, with an interquartile range of 96.7–110.5 HU. The median (interquartile range) for the Structural Similarity Index (SSIM) and the Peak Signal to Noise Ratio (PNSR) were 0.89 (0.86–0.89) and 26.58 (25.52–27.42), respectively.
The analysis of the results showed acceptable performances of the federated approach, thus highlighting the potential of FL to enhance MRI-to-sCT to improve generalisability and advancing safe and equitable clinical applications while fostering collaboration and preserving data privacy.
FedSynthCT-Brain:用于多机构脑mri - ct合成的联邦学习框架
合成计算机断层扫描(sCT)图像的生成已经成为现代临床实践中的关键方法,特别是在放射治疗(RT)治疗计划的背景下。sCT的使用使剂量计算成为可能,推动了磁共振成像(MRI)引导的放射治疗。此外,随着MRI-正电子发射断层扫描(PET)混合扫描仪的引入,从MRI中推导出sCT可以提高PET图像的衰减校正。mri - sct的深度学习方法已经显示出有希望的结果,但它们对单中心训练数据集的依赖限制了它们在不同临床环境下的泛化能力。此外,创建集中的多中心数据集可能会带来隐私问题。为了解决上述问题,我们引入了FedSynthCT-Brain,这是一种基于联邦学习(FL)范式的脑成像mri - sct方法。这是FL在MRI-to-sCT中的首批应用之一,采用跨筒仓水平FL方法,允许多个中心协作训练基于u - net的深度学习模型。我们使用来自四个欧洲和美国中心的真实多中心数据验证了我们的方法,模拟了异构扫描仪类型和采集方式,并在来自联邦以外中心的独立数据集上测试了其性能。在看不见的中心的情况下,联合模型在23例患者中实现了102.0 HU的中位平均绝对误差(MAE),四分位数范围为96.7-110.5 HU。结构相似指数(SSIM)和峰值信噪比(PNSR)的中位数(四分位数范围)分别为0.89(0.86 ~ 0.89)和26.58(25.52 ~ 27.42)。对结果的分析显示,联合方法具有可接受的性能,从而突出了FL在增强mri - sct的通用性、推进安全和公平的临床应用、同时促进协作和保护数据隐私方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信