Flexible anchor-based trajectory prediction for different types of traffic participants in autonomous driving systems

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yingjuan Tang , Hongwen He , Yong Wang , Yifan Wu
{"title":"Flexible anchor-based trajectory prediction for different types of traffic participants in autonomous driving systems","authors":"Yingjuan Tang ,&nbsp;Hongwen He ,&nbsp;Yong Wang ,&nbsp;Yifan Wu","doi":"10.1016/j.eswa.2025.127629","DOIUrl":null,"url":null,"abstract":"<div><div>The task of trajectory prediction is a critical component of autonomous vehicle systems. Existing trajectory prediction methodologies encounter challenges in effectively handling varied traffic participant categories and accurately forecasting long-term trajectories. In response, we introduce the Fourier Transformer Prediction (FTP) framework, which integrates the Fourier transform and a flexible anchor approach. The Fourier transform encoder adeptly captures temporal and spectral domain features inherent in trajectory data across diverse categories. The flexible anchor method employs a proposal module without anchors to generate adaptable coarse trajectories, complemented by an anchor-based module for subsequent refinement. FTP adeptly models the characteristics of multi-class participants, enhancing training stability and mitigating issues such as mode collapse. Through extensive experiments conducted on public datasets and the proposed Traffic Route Bus trajectory prediction dataset (TRB), FTP demonstrates superior performance, underscoring its efficacy across diverse traffic scenarios.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"282 ","pages":"Article 127629"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425012515","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The task of trajectory prediction is a critical component of autonomous vehicle systems. Existing trajectory prediction methodologies encounter challenges in effectively handling varied traffic participant categories and accurately forecasting long-term trajectories. In response, we introduce the Fourier Transformer Prediction (FTP) framework, which integrates the Fourier transform and a flexible anchor approach. The Fourier transform encoder adeptly captures temporal and spectral domain features inherent in trajectory data across diverse categories. The flexible anchor method employs a proposal module without anchors to generate adaptable coarse trajectories, complemented by an anchor-based module for subsequent refinement. FTP adeptly models the characteristics of multi-class participants, enhancing training stability and mitigating issues such as mode collapse. Through extensive experiments conducted on public datasets and the proposed Traffic Route Bus trajectory prediction dataset (TRB), FTP demonstrates superior performance, underscoring its efficacy across diverse traffic scenarios.
基于柔性锚的自动驾驶系统中不同类型交通参与者轨迹预测
轨迹预测任务是自动驾驶汽车系统的重要组成部分。现有的轨迹预测方法在有效处理不同交通参与者类别和准确预测长期轨迹方面面临挑战。作为回应,我们引入了傅立叶变换预测(FTP)框架,该框架集成了傅立叶变换和灵活的锚方法。傅里叶变换编码器熟练地捕获了不同类别的轨迹数据中固有的时间和频谱域特征。柔性锚点方法采用无锚点的建议模块来生成适应性强的粗轨迹,并辅以基于锚点的模块进行后续细化。FTP熟练地模拟了多类参与者的特征,增强了训练稳定性并减轻了模式崩溃等问题。通过在公共数据集和拟议的交通路线总线轨迹预测数据集(TRB)上进行的大量实验,FTP显示出卓越的性能,强调了其在不同交通场景中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信