Disentangled adaptive fusion transformer using adversarial perturbation for egocentric action anticipation

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Min Hyuk Kim , Jong Won Jung , Eun-Gi Lee , Seok Bong Yoo
{"title":"Disentangled adaptive fusion transformer using adversarial perturbation for egocentric action anticipation","authors":"Min Hyuk Kim ,&nbsp;Jong Won Jung ,&nbsp;Eun-Gi Lee ,&nbsp;Seok Bong Yoo","doi":"10.1016/j.eswa.2025.127648","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, egocentric action anticipation for wearable egocentric cameras has gained significant attention due to its ability to interpret objects and behaviors from a first-person perspective. However, the field faces challenges due to uncertainties arising from several sources: action-irrelevant information, semantically mixed representations of behaviors and objects, and the abrupt motion of the user. To address these challenges, we propose Ego-<span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> to enhance the robustness and reliability of egocentric action anticipation systems. First, Ego-<span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> selectively extracts action-relevant information to make efficient use of additional data beyond visual information. Second, Ego-<span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> generates effective disentangled representations for verbs and nouns using learnable behavior and object queries. Finally, Ego-<span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> enhances the continuity between the present and future using adversarial perturbation. The experimental results on the EPIC-Kitchens-100 and EGTEA Gaze+ datasets demonstrate that Ego-<span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> outperforms existing methods in terms of mean top-5 recall and top-1 accuracy, respectively.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"282 ","pages":"Article 127648"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425012709","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, egocentric action anticipation for wearable egocentric cameras has gained significant attention due to its ability to interpret objects and behaviors from a first-person perspective. However, the field faces challenges due to uncertainties arising from several sources: action-irrelevant information, semantically mixed representations of behaviors and objects, and the abrupt motion of the user. To address these challenges, we propose Ego-A4 to enhance the robustness and reliability of egocentric action anticipation systems. First, Ego-A4 selectively extracts action-relevant information to make efficient use of additional data beyond visual information. Second, Ego-A4 generates effective disentangled representations for verbs and nouns using learnable behavior and object queries. Finally, Ego-A4 enhances the continuity between the present and future using adversarial perturbation. The experimental results on the EPIC-Kitchens-100 and EGTEA Gaze+ datasets demonstrate that Ego-A4 outperforms existing methods in terms of mean top-5 recall and top-1 accuracy, respectively.
基于对抗摄动的自中心动作预测解纠缠自适应融合变压器
近年来,以自我为中心的可穿戴相机的自我中心动作预测由于能够从第一人称视角解释物体和行为而受到了极大的关注。然而,该领域面临着来自几个来源的不确定性带来的挑战:与动作无关的信息,行为和对象的语义混合表示,以及用户的突然运动。为了解决这些挑战,我们提出Ego-A4来增强以自我为中心的动作预期系统的鲁棒性和可靠性。首先,Ego-A4选择性地提取与行动相关的信息,以有效利用视觉信息之外的额外数据。其次,Ego-A4使用可学习的行为和对象查询为动词和名词生成有效的解纠缠表示。最后,Ego-A4利用对抗性扰动增强了现在和未来之间的连续性。在EPIC-Kitchens-100和EGTEA Gaze+数据集上的实验结果表明,Ego-A4分别在平均前5名的召回率和前1名的准确率方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信