{"title":"Sensorless estimation of irradiance and temperature for renewable energy applications: An experimental examination","authors":"Fahad Alsokhiry","doi":"10.1016/j.compeleceng.2025.110329","DOIUrl":null,"url":null,"abstract":"<div><div>This paper prescribes and examines a sensorless Neural Network (NN) model for the precise estimation of essential climatic resources-irradiance and temperature-integral to optimizing renewable energy systems. Reliable data on these variables is crucial across multiple disciplines, especially in renewable energy, where it drives numerous technical and economic objectives. However, achieving exact, real-time estimation remains complex, hindered by the dynamic and variable nature of these variables. This work proposes an NN approach that estimates irradiance and temperature using only the maximum power point (MPP) outputs from a modern photovoltaic (PV) system, eliminating the need for direct sensor measurements. This approach not only offers high adaptability but also integrates seamlessly into existing PV infrastructure, enabling real-time, cost-less implementation. To rigorously validate the model, extensive experimental evaluations were conducted across multiple days, demonstrating its accuracy and resilience. The model achieved a Mean Absolute Error (MAE) of 0.87 and 2.728 for irradiance and temperature, respectively; and a Root Mean Square Error (RMSE) of 2.1127 and 9.1008. These metrics highlight the model's precision and reliability, establishing it as a powerful tool for enhancing the efficiency and intelligence of renewable energy systems. The findings offer significant contributions to renewable energy development, providing a robust, sensorless solution for real-time climatic resource estimation with broad interdisciplinary applications, ultimately empowering smarter and more sustainable energy systems.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"124 ","pages":"Article 110329"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790625002721","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper prescribes and examines a sensorless Neural Network (NN) model for the precise estimation of essential climatic resources-irradiance and temperature-integral to optimizing renewable energy systems. Reliable data on these variables is crucial across multiple disciplines, especially in renewable energy, where it drives numerous technical and economic objectives. However, achieving exact, real-time estimation remains complex, hindered by the dynamic and variable nature of these variables. This work proposes an NN approach that estimates irradiance and temperature using only the maximum power point (MPP) outputs from a modern photovoltaic (PV) system, eliminating the need for direct sensor measurements. This approach not only offers high adaptability but also integrates seamlessly into existing PV infrastructure, enabling real-time, cost-less implementation. To rigorously validate the model, extensive experimental evaluations were conducted across multiple days, demonstrating its accuracy and resilience. The model achieved a Mean Absolute Error (MAE) of 0.87 and 2.728 for irradiance and temperature, respectively; and a Root Mean Square Error (RMSE) of 2.1127 and 9.1008. These metrics highlight the model's precision and reliability, establishing it as a powerful tool for enhancing the efficiency and intelligence of renewable energy systems. The findings offer significant contributions to renewable energy development, providing a robust, sensorless solution for real-time climatic resource estimation with broad interdisciplinary applications, ultimately empowering smarter and more sustainable energy systems.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.