Integral reinforcement learning-based optimal pursuit-evasion control for multi-QUAVs: A zero-sum game approach

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Xinfeng Xu , Chun Liu , Liang Xu , Qiang Wang , Yizhen Meng
{"title":"Integral reinforcement learning-based optimal pursuit-evasion control for multi-QUAVs: A zero-sum game approach","authors":"Xinfeng Xu ,&nbsp;Chun Liu ,&nbsp;Liang Xu ,&nbsp;Qiang Wang ,&nbsp;Yizhen Meng","doi":"10.1016/j.jfranklin.2025.107685","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the optimal pursuit-evasion control (PEC) under zero-sum game for multiple quadrotor unmanned aerial vehicles (multi-QUAVs) with unknown dynamics, aiming to capture an evader QUAV (EQUAV). First, the pursuit-evasion error dynamics are constructed based on multi-pursuer QUAVs (multi-PQUAVs) and an EQUAV. Second, within the framework of a zero-sum game, adversarial strategies are designed for both the multi-PQUAVs and the EQUAV. By minimizing the cost function, the multi-PQUAVs aim to minimize the pursuit-evasion error, while the EQUAV seeks to maximize pursuit-evasion error. Third, an actor-critic neural network (NN) based on integral reinforcement learning (IRL) is developed to optimize the adversarial strategies of both the multi-PQUAVs and the EQUAV while updating their strategies toward the optimal approximate solution. The stability analysis demonstrates that the pursuit-evasion error, critic NN weight error, PQUAVs’ actor NN weight error, and EQUAV’s actor NN weight error are uniformly ultimately bounded. Finally, simulations validate the effectiveness and adaptability of the IRL-based optimal PEC algorithm under zero-sum game.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 8","pages":"Article 107685"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003225001784","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the optimal pursuit-evasion control (PEC) under zero-sum game for multiple quadrotor unmanned aerial vehicles (multi-QUAVs) with unknown dynamics, aiming to capture an evader QUAV (EQUAV). First, the pursuit-evasion error dynamics are constructed based on multi-pursuer QUAVs (multi-PQUAVs) and an EQUAV. Second, within the framework of a zero-sum game, adversarial strategies are designed for both the multi-PQUAVs and the EQUAV. By minimizing the cost function, the multi-PQUAVs aim to minimize the pursuit-evasion error, while the EQUAV seeks to maximize pursuit-evasion error. Third, an actor-critic neural network (NN) based on integral reinforcement learning (IRL) is developed to optimize the adversarial strategies of both the multi-PQUAVs and the EQUAV while updating their strategies toward the optimal approximate solution. The stability analysis demonstrates that the pursuit-evasion error, critic NN weight error, PQUAVs’ actor NN weight error, and EQUAV’s actor NN weight error are uniformly ultimately bounded. Finally, simulations validate the effectiveness and adaptability of the IRL-based optimal PEC algorithm under zero-sum game.
基于积分强化学习的多quav最优追逃控制:零和博弈方法
研究了零和博弈下多架未知动力学四旋翼无人机(multi-QUAV)的最优追逃控制(PEC),目的是捕获一架飞行器(EQUAV)。首先,建立了基于多追踪器quav (multi- pquav)和一个EQUAV的追踪-逃避误差动力学模型。其次,在零和博弈的框架下,针对多pquav和单pquav设计对抗策略。通过最小化代价函数,多pquav的目标是最小化追踪-逃避误差,而EQUAV的目标是最大化追踪-逃避误差。第三,提出了一种基于积分强化学习(IRL)的行为-批评神经网络(NN),用于优化多pquav和EQUAV的对抗策略,并将其策略更新到最优近似解。稳定性分析表明,追逃误差、评价神经网络权值误差、pquav的行动者神经网络权值误差和EQUAV的行动者神经网络权值误差最终是一致有界的。最后,通过仿真验证了零和博弈下基于irl的最优PEC算法的有效性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信