Zhang-Hua Yang, Puqi Wu, Bo-Xin Zhang, Cong-Rong Yang, Jia Huang, Lei Wu, Shuang-Hui Guo, Yuenan Zhou, Yuanhui Mao, Yafei Yin, Xiurong Wu, Pu Cheng, Baizhou Li, Rongbin Zhou, Han-Ming Shen, Sheng Nie, Zhi-Yu Cai, Wei Mo
{"title":"ZBP1 senses splicing aberration through Z-RNA to promote cell death","authors":"Zhang-Hua Yang, Puqi Wu, Bo-Xin Zhang, Cong-Rong Yang, Jia Huang, Lei Wu, Shuang-Hui Guo, Yuenan Zhou, Yuanhui Mao, Yafei Yin, Xiurong Wu, Pu Cheng, Baizhou Li, Rongbin Zhou, Han-Ming Shen, Sheng Nie, Zhi-Yu Cai, Wei Mo","doi":"10.1016/j.molcel.2025.03.023","DOIUrl":null,"url":null,"abstract":"RNA splicing, a highly regulated process performed by the spliceosome, is essential for eukaryotic gene expression and cellular function. Numerous cellular stresses, including oncogenic insults, dysregulate RNA splicing, often provoking inflammatory responses and cell death. However, the molecular signals generated by splicing aberrations and the mechanism by which cells sense and respond to these signals remain poorly understood. Here, we demonstrate that spliceosome inhibition induces the widespread formation of left-handed Z-form double-stranded RNA (Z-RNA), predominantly derived from mis-spliced exonic and intronic RNA transcripts in the nucleus. These Z-RNAs are exported to the cytoplasm in a RanGTP-dependent manner. Cytosolic sensing of accumulated Z-RNA by the host sensor Z-DNA-binding protein 1 (ZBP1) initiates cell death, primarily through RIPK3-MLKL-dependent necroptosis. Together, these findings reveal a previously uncharacterized mechanism in which ZBP1-mediated detection of Z-RNA serves as a critical response to global RNA splicing perturbations, ultimately triggering inflammatory cell death.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"15 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2025.03.023","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA splicing, a highly regulated process performed by the spliceosome, is essential for eukaryotic gene expression and cellular function. Numerous cellular stresses, including oncogenic insults, dysregulate RNA splicing, often provoking inflammatory responses and cell death. However, the molecular signals generated by splicing aberrations and the mechanism by which cells sense and respond to these signals remain poorly understood. Here, we demonstrate that spliceosome inhibition induces the widespread formation of left-handed Z-form double-stranded RNA (Z-RNA), predominantly derived from mis-spliced exonic and intronic RNA transcripts in the nucleus. These Z-RNAs are exported to the cytoplasm in a RanGTP-dependent manner. Cytosolic sensing of accumulated Z-RNA by the host sensor Z-DNA-binding protein 1 (ZBP1) initiates cell death, primarily through RIPK3-MLKL-dependent necroptosis. Together, these findings reveal a previously uncharacterized mechanism in which ZBP1-mediated detection of Z-RNA serves as a critical response to global RNA splicing perturbations, ultimately triggering inflammatory cell death.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.