Mateusz Domański, Antonio Santacesaria, Paolo Barone, José Lorenzana, Wojciech Grochala
{"title":"Ternary nickel hydrides: A platform for unconventional superconductivity and quantum magnetism","authors":"Mateusz Domański, Antonio Santacesaria, Paolo Barone, José Lorenzana, Wojciech Grochala","doi":"10.1103/physrevb.111.165137","DOIUrl":null,"url":null,"abstract":"Hydrides are famous for the possibility of reaching high-T</a:mi>c</a:mi></a:msub></a:math> superconductivity under high pressure within a conventional mechanism. Here we propose ternary nickel hydrides <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:mi>M</c:mi><c:mi>Ni</c:mi><c:msub><c:mi mathvariant=\"normal\">H</c:mi><c:mn>2</c:mn></c:msub></c:mrow></c:math> (<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:mrow><e:mi>M</e:mi><e:mo>=</e:mo><e:mi>Li</e:mi></e:mrow></e:math>, Na) as materials that mirror key aspects of unconventional superconducting cuprates and nickelates while presenting unique characteristics. Compared to Ni oxides, Ni-H bands are wider due to shorter bond lengths and show a smaller charge-transfer energy. This leads to a larger scale of magnetic interactions than for <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:mrow><f:mi>LaNi</f:mi><f:msub><f:mi mathvariant=\"normal\">O</f:mi><f:mn>2</f:mn></f:msub></f:mrow></f:math>, which previous works in cuprates suggest should lead to a larger <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:msub><h:mi>T</h:mi><h:mi mathvariant=\"normal\">c</h:mi></h:msub></h:math>. The presence of an interstitial anionic electron orbital, which hybridizes with the <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"><j:msub><j:mi>d</j:mi><j:msup><j:mrow><j:mi>z</j:mi></j:mrow><j:mn>2</j:mn></j:msup></j:msub></j:math> band, induces self-doping in the Ni <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\"><k:msub><k:mi>d</k:mi><k:mrow><k:msup><k:mrow><k:mi>x</k:mi></k:mrow><k:mn>2</k:mn></k:msup><k:mo>−</k:mo><k:msup><k:mrow><k:mi>y</k:mi></k:mrow><k:mn>2</k:mn></k:msup></k:mrow></k:msub></k:math> band, enabling metallicity and superconductivity in stoichiometric forms. A <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\"><l:mi>t</l:mi><l:mo>−</l:mo><l:mrow><l:mi>J</l:mi></l:mrow></l:math> model computation yields dominant <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:msub><m:mi>d</m:mi><m:mrow><m:msup><m:mrow><m:mi>x</m:mi></m:mrow><m:mn>2</m:mn></m:msup><m:mo>−</m:mo><m:msup><m:mrow><m:mi>y</m:mi></m:mrow><m:mn>2</m:mn></m:msup></m:mrow></m:msub></m:math> superconducting symmetry for all doping levels. This, combined with the improved thermodynamic stability over known <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\"><n:mrow><n:mi mathvariant=\"normal\">N</n:mi><n:msup><n:mrow><n:mi mathvariant=\"normal\">i</n:mi></n:mrow><n:mrow><n:mn>1</n:mn><n:mo>+</n:mo></n:mrow></n:msup></n:mrow></n:math> oxides, positions <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\"><q:mrow><q:mi>M</q:mi><q:mi>Ni</q:mi><q:msub><q:mi mathvariant=\"normal\">H</q:mi><q:mn>2</q:mn></q:msub></q:mrow></q:math> as compelling materials for unconventional high-<s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\"><s:msub><s:mi>T</s:mi><s:mi mathvariant=\"normal\">c</s:mi></s:msub></s:math> superconductivity under standard conditions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"9 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.165137","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrides are famous for the possibility of reaching high-Tc superconductivity under high pressure within a conventional mechanism. Here we propose ternary nickel hydrides MNiH2 (M=Li, Na) as materials that mirror key aspects of unconventional superconducting cuprates and nickelates while presenting unique characteristics. Compared to Ni oxides, Ni-H bands are wider due to shorter bond lengths and show a smaller charge-transfer energy. This leads to a larger scale of magnetic interactions than for LaNiO2, which previous works in cuprates suggest should lead to a larger Tc. The presence of an interstitial anionic electron orbital, which hybridizes with the dz2 band, induces self-doping in the Ni dx2−y2 band, enabling metallicity and superconductivity in stoichiometric forms. A t−J model computation yields dominant dx2−y2 superconducting symmetry for all doping levels. This, combined with the improved thermodynamic stability over known Ni1+ oxides, positions MNiH2 as compelling materials for unconventional high-Tc superconductivity under standard conditions. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter