Ternary nickel hydrides: A platform for unconventional superconductivity and quantum magnetism

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Mateusz Domański, Antonio Santacesaria, Paolo Barone, José Lorenzana, Wojciech Grochala
{"title":"Ternary nickel hydrides: A platform for unconventional superconductivity and quantum magnetism","authors":"Mateusz Domański, Antonio Santacesaria, Paolo Barone, José Lorenzana, Wojciech Grochala","doi":"10.1103/physrevb.111.165137","DOIUrl":null,"url":null,"abstract":"Hydrides are famous for the possibility of reaching high-T</a:mi>c</a:mi></a:msub></a:math> superconductivity under high pressure within a conventional mechanism. Here we propose ternary nickel hydrides <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:mi>M</c:mi><c:mi>Ni</c:mi><c:msub><c:mi mathvariant=\"normal\">H</c:mi><c:mn>2</c:mn></c:msub></c:mrow></c:math> (<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:mrow><e:mi>M</e:mi><e:mo>=</e:mo><e:mi>Li</e:mi></e:mrow></e:math>, Na) as materials that mirror key aspects of unconventional superconducting cuprates and nickelates while presenting unique characteristics. Compared to Ni oxides, Ni-H bands are wider due to shorter bond lengths and show a smaller charge-transfer energy. This leads to a larger scale of magnetic interactions than for <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:mrow><f:mi>LaNi</f:mi><f:msub><f:mi mathvariant=\"normal\">O</f:mi><f:mn>2</f:mn></f:msub></f:mrow></f:math>, which previous works in cuprates suggest should lead to a larger <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:msub><h:mi>T</h:mi><h:mi mathvariant=\"normal\">c</h:mi></h:msub></h:math>. The presence of an interstitial anionic electron orbital, which hybridizes with the <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"><j:msub><j:mi>d</j:mi><j:msup><j:mrow><j:mi>z</j:mi></j:mrow><j:mn>2</j:mn></j:msup></j:msub></j:math> band, induces self-doping in the Ni <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\"><k:msub><k:mi>d</k:mi><k:mrow><k:msup><k:mrow><k:mi>x</k:mi></k:mrow><k:mn>2</k:mn></k:msup><k:mo>−</k:mo><k:msup><k:mrow><k:mi>y</k:mi></k:mrow><k:mn>2</k:mn></k:msup></k:mrow></k:msub></k:math> band, enabling metallicity and superconductivity in stoichiometric forms. A <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\"><l:mi>t</l:mi><l:mo>−</l:mo><l:mrow><l:mi>J</l:mi></l:mrow></l:math> model computation yields dominant <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:msub><m:mi>d</m:mi><m:mrow><m:msup><m:mrow><m:mi>x</m:mi></m:mrow><m:mn>2</m:mn></m:msup><m:mo>−</m:mo><m:msup><m:mrow><m:mi>y</m:mi></m:mrow><m:mn>2</m:mn></m:msup></m:mrow></m:msub></m:math> superconducting symmetry for all doping levels. This, combined with the improved thermodynamic stability over known <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\"><n:mrow><n:mi mathvariant=\"normal\">N</n:mi><n:msup><n:mrow><n:mi mathvariant=\"normal\">i</n:mi></n:mrow><n:mrow><n:mn>1</n:mn><n:mo>+</n:mo></n:mrow></n:msup></n:mrow></n:math> oxides, positions <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\"><q:mrow><q:mi>M</q:mi><q:mi>Ni</q:mi><q:msub><q:mi mathvariant=\"normal\">H</q:mi><q:mn>2</q:mn></q:msub></q:mrow></q:math> as compelling materials for unconventional high-<s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\"><s:msub><s:mi>T</s:mi><s:mi mathvariant=\"normal\">c</s:mi></s:msub></s:math> superconductivity under standard conditions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"9 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.165137","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrides are famous for the possibility of reaching high-Tc superconductivity under high pressure within a conventional mechanism. Here we propose ternary nickel hydrides MNiH2 (M=Li, Na) as materials that mirror key aspects of unconventional superconducting cuprates and nickelates while presenting unique characteristics. Compared to Ni oxides, Ni-H bands are wider due to shorter bond lengths and show a smaller charge-transfer energy. This leads to a larger scale of magnetic interactions than for LaNiO2, which previous works in cuprates suggest should lead to a larger Tc. The presence of an interstitial anionic electron orbital, which hybridizes with the dz2 band, induces self-doping in the Ni dx2y2 band, enabling metallicity and superconductivity in stoichiometric forms. A tJ model computation yields dominant dx2y2 superconducting symmetry for all doping levels. This, combined with the improved thermodynamic stability over known Ni1+ oxides, positions MNiH2 as compelling materials for unconventional high-Tc superconductivity under standard conditions. Published by the American Physical Society 2025
三元氢化镍:非常规超导和量子磁性的平台
氢化物以在常规机制下在高压下达到高tc超导性的可能性而闻名。在这里,我们提出三元镍氢化物MNiH2 (M=Li, Na)作为材料,反映了非常规超导铜酸盐和镍酸盐的关键方面,同时呈现出独特的特性。与Ni氧化物相比,由于键长较短,Ni- h带更宽,并且显示出较小的电荷转移能。这导致了比LaNiO2更大规模的磁相互作用,之前在铜酸盐中的研究表明,这应该导致更大的Tc。与dz2带杂化的间隙阴离子电子轨道的存在,诱导了Ni dx2−y2带的自掺杂,实现了化学计量形式的金属丰度和超导性。一个t - J模型计算得到了所有掺杂水平的显性dx2 - y2超导对称性。与已知Ni1+氧化物相比,MNiH2的热力学稳定性得到了改善,这使得MNiH2在标准条件下成为非常规高tc超导材料。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信