Xiuxiu Lu,Venkata R Sabbasani,Bakar Hassan,Rolf E Swenson,Kylie J Walters
{"title":"Optimization of the PROTAC linker region of the proteasome substrate receptor hRpn13 rationalized structural modeling with molecular dynamics.","authors":"Xiuxiu Lu,Venkata R Sabbasani,Bakar Hassan,Rolf E Swenson,Kylie J Walters","doi":"10.1016/j.jbc.2025.108520","DOIUrl":null,"url":null,"abstract":"Proteasome substrate receptor hRpn13 is a promising target for cancer therapy. hRpn13 PROTACs induce apoptosis by targeting the hRpn13 proteolytic product hRpn13Pru, which contains an intact ubiquitin- and proteasome-binding Pru domain. We generated a PROTAC series based on hRpn13Pru-targeting XL5 by varying the linker that connects it to a warhead against the VHL-based ubiquitin E3 ligase machinery. Among eight tested derivatives, XL5-VHL-7 with a -(CH2)5- alkyl linker promoted hRpn13Pru degradation and induced cellular apoptosis with 2-fold improved potency compared to the original PROTAC. By using this PROTAC series with slight chemical modifications in the linker region, we were able to evaluate the efficacy of structural modeling with molecular dynamics for refining PROTACs. Overall, we found that the experimental data correlated with efficacy predictions based on molecular dynamics and structural modeling. Moreover, we could observe hRpn13:PROTAC:VHL complexes by 2D NMR that support the structural modeling and stronger affinity of XL5-VHL-7 compared to the original hRpn13 PROTAC. Our NMR data further indicate that hRpn13 Pru affinity for XL5-VHL-7 is higher within the VHL complex present than with XL5-VHL-7 alone. Altogether, we develop an hRpn13 PROTAC with 2-fold increased potency by optimizing the linker and demonstrate the current benefit and limitations for including modeling with molecular dynamics to aid PROTAC optimization.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"43 1","pages":"108520"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108520","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proteasome substrate receptor hRpn13 is a promising target for cancer therapy. hRpn13 PROTACs induce apoptosis by targeting the hRpn13 proteolytic product hRpn13Pru, which contains an intact ubiquitin- and proteasome-binding Pru domain. We generated a PROTAC series based on hRpn13Pru-targeting XL5 by varying the linker that connects it to a warhead against the VHL-based ubiquitin E3 ligase machinery. Among eight tested derivatives, XL5-VHL-7 with a -(CH2)5- alkyl linker promoted hRpn13Pru degradation and induced cellular apoptosis with 2-fold improved potency compared to the original PROTAC. By using this PROTAC series with slight chemical modifications in the linker region, we were able to evaluate the efficacy of structural modeling with molecular dynamics for refining PROTACs. Overall, we found that the experimental data correlated with efficacy predictions based on molecular dynamics and structural modeling. Moreover, we could observe hRpn13:PROTAC:VHL complexes by 2D NMR that support the structural modeling and stronger affinity of XL5-VHL-7 compared to the original hRpn13 PROTAC. Our NMR data further indicate that hRpn13 Pru affinity for XL5-VHL-7 is higher within the VHL complex present than with XL5-VHL-7 alone. Altogether, we develop an hRpn13 PROTAC with 2-fold increased potency by optimizing the linker and demonstrate the current benefit and limitations for including modeling with molecular dynamics to aid PROTAC optimization.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.