Laurent Renou, Wenjie Sun, Chloe Friedrich, Klaudia Galant, Cecile Conrad, Anne Consalus, Evelia Plantier, Katharina Schallmoser, Linda Krisch, Vilma Barroca, Saryami Devanand, Nathalie Dechamps, Andreas Reinisch, Jelena Martinovic, Alessandra Magnani, Lionel Faivre, Daniel Lewandowski, Julien Calvo, Leila Perie, Olivier Kosmider, Françoise Pflumio
{"title":"Orchestration of human multi-lineage hematopoietic cell development by humanized in vivo bone marrow models","authors":"Laurent Renou, Wenjie Sun, Chloe Friedrich, Klaudia Galant, Cecile Conrad, Anne Consalus, Evelia Plantier, Katharina Schallmoser, Linda Krisch, Vilma Barroca, Saryami Devanand, Nathalie Dechamps, Andreas Reinisch, Jelena Martinovic, Alessandra Magnani, Lionel Faivre, Daniel Lewandowski, Julien Calvo, Leila Perie, Olivier Kosmider, Françoise Pflumio","doi":"10.1002/hem3.70120","DOIUrl":null,"url":null,"abstract":"<p>Hematopoiesis develops in the bone marrow (BM) where multiple interactions regulate the differentiation and preservation of hematopoietic stem and progenitor cells (HSPCs). Immune-deficient murine models have enabled the analysis of molecular and cellular regulation of human HSPCs, but the physiology of these models is questioned as human hematopoietic cells develop in xenogenic microenvironments. In this study, we thoroughly characterized a humanized (h) in vivo BM model, developed from fetal (F/) and post-natal (P-N/) mesenchymal stromal cell (MSC) differentiation (called hOssicles [hOss]), in which human hematopoietic cells are generated following the transplantation of CD34<sup>+</sup> cells. Serial isolation and transplant experiments of hMSCs and HSPCs from hOss revealed the dynamic nature of these hBM niches. hOss modified human hematopoietic development by modulating myeloid/lymphoid cell production and HSPC levels, with no major transcriptional changes in HSPCs at the single-cell level. Clonal tracking using genetic barcodes highlighted hematopoietic cell cross-talks between the endogenous murine BM and hOss and differences in clonal myeloid/multipotent cell production between F/hOss and P-N/hOss, uncovering ontogeny-related impact of the BM on human hematopoietic cell production.</p>","PeriodicalId":12982,"journal":{"name":"HemaSphere","volume":"9 4","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hem3.70120","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HemaSphere","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hem3.70120","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hematopoiesis develops in the bone marrow (BM) where multiple interactions regulate the differentiation and preservation of hematopoietic stem and progenitor cells (HSPCs). Immune-deficient murine models have enabled the analysis of molecular and cellular regulation of human HSPCs, but the physiology of these models is questioned as human hematopoietic cells develop in xenogenic microenvironments. In this study, we thoroughly characterized a humanized (h) in vivo BM model, developed from fetal (F/) and post-natal (P-N/) mesenchymal stromal cell (MSC) differentiation (called hOssicles [hOss]), in which human hematopoietic cells are generated following the transplantation of CD34+ cells. Serial isolation and transplant experiments of hMSCs and HSPCs from hOss revealed the dynamic nature of these hBM niches. hOss modified human hematopoietic development by modulating myeloid/lymphoid cell production and HSPC levels, with no major transcriptional changes in HSPCs at the single-cell level. Clonal tracking using genetic barcodes highlighted hematopoietic cell cross-talks between the endogenous murine BM and hOss and differences in clonal myeloid/multipotent cell production between F/hOss and P-N/hOss, uncovering ontogeny-related impact of the BM on human hematopoietic cell production.
期刊介绍:
HemaSphere, as a publication, is dedicated to disseminating the outcomes of profoundly pertinent basic, translational, and clinical research endeavors within the field of hematology. The journal actively seeks robust studies that unveil novel discoveries with significant ramifications for hematology.
In addition to original research, HemaSphere features review articles and guideline articles that furnish lucid synopses and discussions of emerging developments, along with recommendations for patient care.
Positioned as the foremost resource in hematology, HemaSphere augments its offerings with specialized sections like HemaTopics and HemaPolicy. These segments engender insightful dialogues covering a spectrum of hematology-related topics, including digestible summaries of pivotal articles, updates on new therapies, deliberations on European policy matters, and other noteworthy news items within the field. Steering the course of HemaSphere are Editor in Chief Jan Cools and Deputy Editor in Chief Claire Harrison, alongside the guidance of an esteemed Editorial Board comprising international luminaries in both research and clinical realms, each representing diverse areas of hematologic expertise.