{"title":"Newly Synthesized PW06 Induced Cell Apoptosis in Human Glioblastoma Multiforme GBM 8401 Cells Through Caspase- and Mitochondria-Dependent Pathways","authors":"Jin-Cherng Lien, Sheng-Yao Hsu, Fu-Shin Chueh, Yi-Shih Ma, Yung-Lin Chu, Yu-Cheng Chou, Kuang-Chi Lai, Jaw-Chyun Chen, Yi-Ping Huang, Rick Sai-Chuen Wu","doi":"10.1002/jbt.70264","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Glioblastoma multiforme (GBM) is the most common, aggressive, and dangerous lethal tumor in the brain, which develops in adults. Currently, the efficiency of chemotherapy treatment for GBM patients is still unsatisfactory. PW06 was synthesized by Dr. Lien's laboratory (China Medical University, Taichung, Taiwan), and it was demonstrated to induce cancer cell apoptosis in human pancreatic carcinoma MIA PaCa-2 cells. However, the anti-cancer activities of PW06 on human GBM cancer cells are not reported. Thus, herein, PW06 was investigated on the anticancer activity on human glioblastoma multiforme GBM 8401 cells. Both PI exclusion and Annexin V/PI double staining methods were conducted for investing cell viability and apoptosis in GBM 8401 cells, respectively; they were analyzed with flow cytometer assay. Results showed that PW06 decreased total viable cell number with the process of cell apoptosis in GBM 8401 cells. Both productions of reactive oxygen species (ROS) and Ca<sup>2+</sup>, affect mitochondria membrane potential (ΔΨm) levels, and activities of caspase-3, -8, and -9 in GBM 8401 cells after exposure with PW06 were assayed by flow cytometer. Results showed that PW06 promoted ROS production and Ca<sup>2+</sup> release from ER but lowered the levels of ΔΨm, and it also induced higher activities in caspase-3, -8, and -9 in GBM 8401 cells. Evaluation of protein expressions associated with apoptosis in GBM 8401 cells after being incubated with PW06 were conducted by Western blot analysis. Results show that PW06 increased GADD153, BiP, ATF-6α, ATF-6β, eIF2α, eIF2α<sup>pSer51</sup>, CHOP, and caspase-4, and they are associated with ER stress-associated protein expression. However, it induced higher pro-apoptotic proteins (Bax and Bad) expression and inhibited anti-apoptotic proteins (Bcl-2, Bcl-xl, and Mcl-1) expression, even promoting higher cleaved caspase-8, -9, and -3 protein expression and increased EndoG and AIF in GBM 8401 cells. Collectively, it may suggest PW06 exits anti-GBM activity to process cell apoptosis in the human GBM 8401 cells in vitro.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70264","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma multiforme (GBM) is the most common, aggressive, and dangerous lethal tumor in the brain, which develops in adults. Currently, the efficiency of chemotherapy treatment for GBM patients is still unsatisfactory. PW06 was synthesized by Dr. Lien's laboratory (China Medical University, Taichung, Taiwan), and it was demonstrated to induce cancer cell apoptosis in human pancreatic carcinoma MIA PaCa-2 cells. However, the anti-cancer activities of PW06 on human GBM cancer cells are not reported. Thus, herein, PW06 was investigated on the anticancer activity on human glioblastoma multiforme GBM 8401 cells. Both PI exclusion and Annexin V/PI double staining methods were conducted for investing cell viability and apoptosis in GBM 8401 cells, respectively; they were analyzed with flow cytometer assay. Results showed that PW06 decreased total viable cell number with the process of cell apoptosis in GBM 8401 cells. Both productions of reactive oxygen species (ROS) and Ca2+, affect mitochondria membrane potential (ΔΨm) levels, and activities of caspase-3, -8, and -9 in GBM 8401 cells after exposure with PW06 were assayed by flow cytometer. Results showed that PW06 promoted ROS production and Ca2+ release from ER but lowered the levels of ΔΨm, and it also induced higher activities in caspase-3, -8, and -9 in GBM 8401 cells. Evaluation of protein expressions associated with apoptosis in GBM 8401 cells after being incubated with PW06 were conducted by Western blot analysis. Results show that PW06 increased GADD153, BiP, ATF-6α, ATF-6β, eIF2α, eIF2αpSer51, CHOP, and caspase-4, and they are associated with ER stress-associated protein expression. However, it induced higher pro-apoptotic proteins (Bax and Bad) expression and inhibited anti-apoptotic proteins (Bcl-2, Bcl-xl, and Mcl-1) expression, even promoting higher cleaved caspase-8, -9, and -3 protein expression and increased EndoG and AIF in GBM 8401 cells. Collectively, it may suggest PW06 exits anti-GBM activity to process cell apoptosis in the human GBM 8401 cells in vitro.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.