{"title":"Hawking–Rényi black hole thermodynamics, Kiselev solution, and cosmic censorship","authors":"Viktor G. Czinner, Hideo Iguchi","doi":"10.1140/epjc/s10052-025-14117-w","DOIUrl":null,"url":null,"abstract":"<div><p>Explicit example, where the Hawking temperature of a black hole horizon is compatible with the black hole’s Rényi entropy thermodynamic description, is constructed. It is shown that for every static, spherically symmetric, vacuum black hole space-time, a corresponding black hole solution can be derived, where the Hawking temperature is identical with the Rényi temperature, i.e. the one obtained from the Rényi entropy of the black hole via the <i>1st law</i> of thermodynamics. In order to have this Hawking–Rényi type thermodynamic property, the black holes must be surrounded by an anisotropic fluid in the form of a Kiselev metric, where the properties of the fluid are uniquely determined by the mass of the black hole, <i>M</i>, and the Rényi parameter, <span>\\(\\lambda \\)</span>. In the simplest Schwarzschild scenario, the system is found to be thermodynamically unstable, and the <i>3rd law</i> of thermodynamics seems to play the role of a cosmic censor via placing an upper bound on the black hole’s mass, by which preventing the black hole from loosing its horizon(s).\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14117-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14117-w","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
Explicit example, where the Hawking temperature of a black hole horizon is compatible with the black hole’s Rényi entropy thermodynamic description, is constructed. It is shown that for every static, spherically symmetric, vacuum black hole space-time, a corresponding black hole solution can be derived, where the Hawking temperature is identical with the Rényi temperature, i.e. the one obtained from the Rényi entropy of the black hole via the 1st law of thermodynamics. In order to have this Hawking–Rényi type thermodynamic property, the black holes must be surrounded by an anisotropic fluid in the form of a Kiselev metric, where the properties of the fluid are uniquely determined by the mass of the black hole, M, and the Rényi parameter, \(\lambda \). In the simplest Schwarzschild scenario, the system is found to be thermodynamically unstable, and the 3rd law of thermodynamics seems to play the role of a cosmic censor via placing an upper bound on the black hole’s mass, by which preventing the black hole from loosing its horizon(s).
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.