Exponential decay for a porous elastic truncated model with time delay effects

Q2 Mathematics
Dilberto da Silva Almeida Júnior, Anderson de Jesus Araújo Ramos, Mirelson Martins Freitas, Baowei Feng, Luiz Gutemberg Rosário Miranda
{"title":"Exponential decay for a porous elastic truncated model with time delay effects","authors":"Dilberto da Silva Almeida Júnior,&nbsp;Anderson de Jesus Araújo Ramos,&nbsp;Mirelson Martins Freitas,&nbsp;Baowei Feng,&nbsp;Luiz Gutemberg Rosário Miranda","doi":"10.1007/s11565-025-00589-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a truncated version for 1D porous-elasticity equations and established exponential decay results by incorporating damping mechanisms of time delay types acting partially on the system. Our approach is based on contribution by Ramos et al. (Appl Math Lett 101:106061, 2020). We proved that the exponential decay property holds regardless any relationship between coefficients of the system.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00589-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a truncated version for 1D porous-elasticity equations and established exponential decay results by incorporating damping mechanisms of time delay types acting partially on the system. Our approach is based on contribution by Ramos et al. (Appl Math Lett 101:106061, 2020). We proved that the exponential decay property holds regardless any relationship between coefficients of the system.

具有时间延迟效应的多孔弹性截断模型的指数衰减
在本文中,我们考虑了一维多孔弹性方程的截断版本,并通过纳入部分作用于系统的时滞型阻尼机制建立了指数衰减结果。我们的方法是基于Ramos等人的贡献(应用数学快报101:106061,2020)。证明了系统的指数衰减性质与系统系数之间的关系无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信