Evolution of a Jet-in-Coflow

IF 2 3区 工程技术 Q3 MECHANICS
Rishikesh Sampat, Ferry Schrijer, Gangoli Rao Arvind
{"title":"Evolution of a Jet-in-Coflow","authors":"Rishikesh Sampat,&nbsp;Ferry Schrijer,&nbsp;Gangoli Rao Arvind","doi":"10.1007/s10494-025-00648-5","DOIUrl":null,"url":null,"abstract":"<div><p>The jet-in-coflow is a two-stream configuration having engineering applications in combustors and gas turbine engine exhausts. In practical systems, the coflow generates a boundary layer of the outer wall of the jet pipe and may also have a certain level of turbulence. In the current work, the evolution of this flow configuration is studied using an air-air turbulent jet in a low turbulence coflow (turbulence intensity &lt; 6%), and the 2D velocity field is measured by planar particle image velocimetry. Cases of varying coflow ratio (ratio of coflow velocity to jet velocity) of 0 (turbulent free jet), 0.09, 0.15, and 0.33 are generated by keeping a constant velocity jet (Re = 14000) and varying the coflow velocity. The trends of jet centerline properties such as velocity decay, jet spread, and jet momentum of jet-in-coflow cases, scaled to represent an equivalent free jet, show deviations from that of the turbulent free jet. The radial profile of mean velocity shows a region of velocity deficit, compared to a turbulent free jet, on the coflow side in the jet-in-coflow cases. In contrast, the turbulence intensity and Reynolds shear stress profiles show an enhanced peak near the interface for the jet-in-coflow cases. Further, conditional statistics were extracted by detecting the interface between the jet and the surroundings, wherein the same trends are observed. The low turbulence levels of the coflow have little effect on the jet/coflow interface, as seen by the conditional enstrophy diffusion and tortuosity compared to a turbulent free jet. The differences at the jet/coflow interface of a jet-in-coflow with respect to a turbulent free jet are attributed to the boundary layer initially developed by the turbulent coflow over the pipe generating the jet, and these are seen throughout the near-to-intermediate field (0<span>\\(\\le\\)</span>x/D<span>\\(\\le\\)</span>40).</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 4","pages":"1087 - 1111"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-025-00648-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-025-00648-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The jet-in-coflow is a two-stream configuration having engineering applications in combustors and gas turbine engine exhausts. In practical systems, the coflow generates a boundary layer of the outer wall of the jet pipe and may also have a certain level of turbulence. In the current work, the evolution of this flow configuration is studied using an air-air turbulent jet in a low turbulence coflow (turbulence intensity < 6%), and the 2D velocity field is measured by planar particle image velocimetry. Cases of varying coflow ratio (ratio of coflow velocity to jet velocity) of 0 (turbulent free jet), 0.09, 0.15, and 0.33 are generated by keeping a constant velocity jet (Re = 14000) and varying the coflow velocity. The trends of jet centerline properties such as velocity decay, jet spread, and jet momentum of jet-in-coflow cases, scaled to represent an equivalent free jet, show deviations from that of the turbulent free jet. The radial profile of mean velocity shows a region of velocity deficit, compared to a turbulent free jet, on the coflow side in the jet-in-coflow cases. In contrast, the turbulence intensity and Reynolds shear stress profiles show an enhanced peak near the interface for the jet-in-coflow cases. Further, conditional statistics were extracted by detecting the interface between the jet and the surroundings, wherein the same trends are observed. The low turbulence levels of the coflow have little effect on the jet/coflow interface, as seen by the conditional enstrophy diffusion and tortuosity compared to a turbulent free jet. The differences at the jet/coflow interface of a jet-in-coflow with respect to a turbulent free jet are attributed to the boundary layer initially developed by the turbulent coflow over the pipe generating the jet, and these are seen throughout the near-to-intermediate field (0\(\le\)x/D\(\le\)40).

同向气流喷射的演变
共流射流是一种双流结构,在燃烧室和燃气涡轮发动机排气中具有工程应用。在实际系统中,共流在射流管的外壁产生边界层,也可能产生一定程度的湍流。在当前的工作中,使用低湍流共流(湍流强度&lt;6%), and the 2D velocity field is measured by planar particle image velocimetry. Cases of varying coflow ratio (ratio of coflow velocity to jet velocity) of 0 (turbulent free jet), 0.09, 0.15, and 0.33 are generated by keeping a constant velocity jet (Re = 14000) and varying the coflow velocity. The trends of jet centerline properties such as velocity decay, jet spread, and jet momentum of jet-in-coflow cases, scaled to represent an equivalent free jet, show deviations from that of the turbulent free jet. The radial profile of mean velocity shows a region of velocity deficit, compared to a turbulent free jet, on the coflow side in the jet-in-coflow cases. In contrast, the turbulence intensity and Reynolds shear stress profiles show an enhanced peak near the interface for the jet-in-coflow cases. Further, conditional statistics were extracted by detecting the interface between the jet and the surroundings, wherein the same trends are observed. The low turbulence levels of the coflow have little effect on the jet/coflow interface, as seen by the conditional enstrophy diffusion and tortuosity compared to a turbulent free jet. The differences at the jet/coflow interface of a jet-in-coflow with respect to a turbulent free jet are attributed to the boundary layer initially developed by the turbulent coflow over the pipe generating the jet, and these are seen throughout the near-to-intermediate field (0\(\le\)x/D\(\le\)40).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信