{"title":"Activity cliff-aware reinforcement learning for de novo drug design","authors":"Xiuyuan Hu, Guoqing Liu, Yang Zhao, Hao Zhang","doi":"10.1186/s13321-025-01006-3","DOIUrl":null,"url":null,"abstract":"<div><p>The integration of artificial intelligence (AI) in drug discovery offers promising opportunities to streamline and enhance the traditional drug development process. One core challenge in <i>de novo</i> molecular design is modeling complex structure-activity relationships (SAR), such as activity cliffs, where minor molecular changes yield significant shifts in biological activity. In response to the limitations of current models in capturing these critical discontinuities, we propose the Activity Cliff-Aware Reinforcement Learning (ACARL) framework. ACARL leverages a novel activity cliff index to identify and amplify activity cliff compounds, uniquely incorporating them into the reinforcement learning (RL) process through a tailored contrastive loss. This RL framework is designed to focus model optimization on high-impact regions within the SAR landscape, improving the generation of molecules with targeted properties. Experimental evaluations across multiple protein targets demonstrate ACARL’s superior performance in generating high-affinity molecules compared to existing state-of-the-art algorithms. These findings indicate that ACARL effectively integrates SAR principles into the RL-based drug design pipeline, offering a robust approach for <i>de novo</i> molecular design</p><p><b>Scientific contribution</b> Our work introduces a machine learning-based drug design framework that explicitly models activity cliffs, a first in AI-driven molecular design. ACARL’s primary technical contributions include the formulation of an activity cliff index to detect these critical points, and a contrastive RL loss function that dynamically enhances the generation of activity cliff compounds, optimizing the model for high-impact SAR regions. This approach demonstrates the efficacy of combining domain knowledge with machine learning advances, significantly expanding the scope and reliability of AI in drug discovery.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01006-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01006-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of artificial intelligence (AI) in drug discovery offers promising opportunities to streamline and enhance the traditional drug development process. One core challenge in de novo molecular design is modeling complex structure-activity relationships (SAR), such as activity cliffs, where minor molecular changes yield significant shifts in biological activity. In response to the limitations of current models in capturing these critical discontinuities, we propose the Activity Cliff-Aware Reinforcement Learning (ACARL) framework. ACARL leverages a novel activity cliff index to identify and amplify activity cliff compounds, uniquely incorporating them into the reinforcement learning (RL) process through a tailored contrastive loss. This RL framework is designed to focus model optimization on high-impact regions within the SAR landscape, improving the generation of molecules with targeted properties. Experimental evaluations across multiple protein targets demonstrate ACARL’s superior performance in generating high-affinity molecules compared to existing state-of-the-art algorithms. These findings indicate that ACARL effectively integrates SAR principles into the RL-based drug design pipeline, offering a robust approach for de novo molecular design
Scientific contribution Our work introduces a machine learning-based drug design framework that explicitly models activity cliffs, a first in AI-driven molecular design. ACARL’s primary technical contributions include the formulation of an activity cliff index to detect these critical points, and a contrastive RL loss function that dynamically enhances the generation of activity cliff compounds, optimizing the model for high-impact SAR regions. This approach demonstrates the efficacy of combining domain knowledge with machine learning advances, significantly expanding the scope and reliability of AI in drug discovery.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.