Changfu Li, Bin Yu, Siyu Zhou, Yuhang Ren, Dezhi Wang, Guang Yang
{"title":"Microstructure and mechanical properties study of friction stir processed GH4169 via laser deposition manufacturing","authors":"Changfu Li, Bin Yu, Siyu Zhou, Yuhang Ren, Dezhi Wang, Guang Yang","doi":"10.1007/s12289-025-01900-z","DOIUrl":null,"url":null,"abstract":"<div><p>The coarse columnar crystals and inter-dendritic Laves phases of laser deposition manufactured (LDM) GH4169 are the two the primary reasons for the undesirable strength and plasticity compatibility and anisotropy of the alloy. In this study, we used friction stir processing (FSP) on LDMed GH4169 samples, the microstructure difference between the FSP zone and the LDM zone were compared, the microstructure refinement process in the FSP zone were analyzed, and the mechanism of microstructure refinement and its influence on the properties of the room-temperature tensile properties were proposed. The results show that fine equiaxed grains with an average grain size of ~ 3.13 μm were obtained in the stir zone (SZ) due to intense plastic deformation and recrystallization processes.The size and shape of the Laves phase changed significantly after FSP, the Laves phase fragmented in the thermo-mechanically affected zone (TMAZ), distributed in long strips along the rotational direction of the tool, and distributed as small particles in the SZ; while the MC-type carbides precipitation exhibited no significant change.The strength and plasticity of the FSP samples were significantly improved relative to the LDM samples, the yield strength and tensile strength reached 546 MPa and 1063 MPa, respectively, and the elongation reached 43%. Numerous strengthening mechanisms to increase the yield strength of the materials are analyzed and calculated in detail.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01900-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The coarse columnar crystals and inter-dendritic Laves phases of laser deposition manufactured (LDM) GH4169 are the two the primary reasons for the undesirable strength and plasticity compatibility and anisotropy of the alloy. In this study, we used friction stir processing (FSP) on LDMed GH4169 samples, the microstructure difference between the FSP zone and the LDM zone were compared, the microstructure refinement process in the FSP zone were analyzed, and the mechanism of microstructure refinement and its influence on the properties of the room-temperature tensile properties were proposed. The results show that fine equiaxed grains with an average grain size of ~ 3.13 μm were obtained in the stir zone (SZ) due to intense plastic deformation and recrystallization processes.The size and shape of the Laves phase changed significantly after FSP, the Laves phase fragmented in the thermo-mechanically affected zone (TMAZ), distributed in long strips along the rotational direction of the tool, and distributed as small particles in the SZ; while the MC-type carbides precipitation exhibited no significant change.The strength and plasticity of the FSP samples were significantly improved relative to the LDM samples, the yield strength and tensile strength reached 546 MPa and 1063 MPa, respectively, and the elongation reached 43%. Numerous strengthening mechanisms to increase the yield strength of the materials are analyzed and calculated in detail.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.