{"title":"Quantum squeezing effects in coupled van der Pol oscillators","authors":"M. Preethi, M. Senthilvelan","doi":"10.1007/s11128-025-04734-5","DOIUrl":null,"url":null,"abstract":"<div><p>Achieving synchronized quantum states within the quantum realm is a significant goal. This regime is characterized by restricted excitation occurrences and a highly nonclassical stable state of the self-oscillating system. However, many existing approaches to observe synchronization in this quantum realm face a major challenge: the influence of noise tends to overshadow the synchronization phenomenon. In coupled van der Pol oscillators, synchronization occurs when a system of two or more oscillators interacts. Our investigation demonstrates that introducing the squeezing Hamiltonian in two coupled van der Pol oscillators enhances nonclassical effects, increases quantum correlations, and improves the robustness of synchronization dynamics. This was evidenced through the analysis of the Wigner function and power spectrum, showing significant improvements compared to systems without squeezing.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04734-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving synchronized quantum states within the quantum realm is a significant goal. This regime is characterized by restricted excitation occurrences and a highly nonclassical stable state of the self-oscillating system. However, many existing approaches to observe synchronization in this quantum realm face a major challenge: the influence of noise tends to overshadow the synchronization phenomenon. In coupled van der Pol oscillators, synchronization occurs when a system of two or more oscillators interacts. Our investigation demonstrates that introducing the squeezing Hamiltonian in two coupled van der Pol oscillators enhances nonclassical effects, increases quantum correlations, and improves the robustness of synchronization dynamics. This was evidenced through the analysis of the Wigner function and power spectrum, showing significant improvements compared to systems without squeezing.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.